ORTHOPROCESSING REPORT

BLUESTONE LAKE AND DOWNSTREAM DIGITAL ELEVATION MODEL AND ORTHOPHOTOGRAPHY PROJECT

PREPARED FOR: U.S. ARMY CORPS OF ENGINEERS HUNTINGTON DISTRICT

PREPARED BY: 3001, INC.

SURVEY ID: H1200903

PROJECT ID: BLN

CONTRACT# W91237-08-D-0002

DELIVERY ORDER NO.: 0006

DATE: 30 NOVEMBER 2009

ORTHOPROCESSING REPORT BLUESTONE LAKE AND DOWNSTREAM DIGITAL ELEVATION MODEL AND ORTHOPHOTOGRAPHY PROJECT

West Virginia

Prepared For:

USACE Huntington District

502 Eighth Street Huntington, WV 25701

Prepared By:

3001, Inc.

401 Dividend Drive, Suite K Peachtree City, GA 30269 Phone: 770.631.0903

Table of Contents

Introduction	4
Project Area	
Data & Image Processing	
Source Image Data	
Ortho-Rectification	
Mosaicing and Finishing	
Orthophoto Accuracy Analysis	

ORTHOPROCESSING REPORT

BLUESTONE LAKE AND DOWNSTREAM DIGITAL ELEVATION MODEL AND ORTHOPHOTOGRAPHY PROJECT

Introduction

This report describes the orthorectification process used to generate digital orthophoto images for the 2009 USACE Huntington District – Bluestone Lake and Downstream Digital Elevation Models and Orthophotography Project.

Project Area

The project area encompasses approximately 1,425 sq miles in West Virginia, including Bluestone Lake and its headwater tributaries, and the drainage corridor and its included tributaries along the New River downstream to approximately mile 0, and the Kanawha River and its tributaries.

Data & Image Processing

Source Image Data

The source image data used to produce the orthophoto images was collected from April 9 – April 27, 2009. The results of the collection effort and AT processing are described in the report "Aerial Triangulation Report, Bluestone Lake and Downstream Elevation Model and Orthophotography Project", dated May 2009, by Woolpert under subcontract to 3001, Inc.

Ortho-Rectification

Each block was orthographically rectified using Leica GPRO software version 3.3.1 to correct imagery for relief displacement using Digital Elevation Models (DEM) of the acquisitioned areas. DEMs used in this process were created from bare earth surface filtered LiDAR collected between April 4 and April 17, 2009, and processed in support of this project.

Mosaicing and Finishing

The ortho-rectified images were mosaiced together using a combination of manual and automated seamline processes in the OrthoVista software version 4.4. Project specified digital orthophoto images were clipped from the mosaic. The images were reviewed for local rectification errors and edits made to correct if necessary. GeoTIFF headers were applied to the final digital orthophoto images to provide spatial reference for GIS software.

Orthophoto Accuracy Analysis

Control points collected and used in the AT processing were measured in the digital orthophoto images to determine overall positional accuracy as described in FGDC Geospatial Positioning Accuracy Standards, Part 3: National Standard for Spatial Data Accuracy (NSSDA). The control point collection and processing effort is described in the report "Photogrammetric Ground Control Survey Report, Bluestone Lake and Downstream Digital Elevation Model and Orthophotography Project", dated May 2009, by Woolpert under subcontract to 3001, Inc. Orthophoto accuracy measurements were performed using ESRI ArcGIS software version 9.2.

ORTHOPHOTO ACCURACY REPORT FOR 1-FOOT ORTHO AREA

POINT ID	CONTROL		MEASURED		DELTA (feet)		
	EASTING	NORTHING	EASTING	NORTHING	EASTING	NORTHING	HORIZ
109	1914171.980	468026.600	1914169.547	468026.043	2.433	0.557	2.496
102	1669030.670	673322.930	1669032.444	673322.711	-1.774	0.219	1.787
126	1692436.000	618071.420	1692436.250	618071.361	-0.250	0.059	0.257
123	1725459.390	527900.000	1725459.660	527900.142	-0.270	-0.142	0.305
106	1833452.200	536945.590	1833453.718	536945.172	-1.518	0.418	1.574
124	1800538.870	481819.980	1800539.484	481819.296	-0.614	0.684	0.919
107	1865367.680	568264.410	1865369.012	568263.969	-1.332	0.441	1.403
132	1881151.610	428491.870	1881150.058	428491.355	1.552	0.515	1.635
131	1885319.030	567558.990	1885317.822	567558.287	1.208	0.703	1.398

RMSE accuracy	2.457	Feet
RMSEr	1.420	Feet
RMSEnorthing	0.269	Feet
RMSEeasting	1.394	Feet

FGDC-STD-007.3-1998

 $RMSEnorthing = \sqrt{\ [\ \sum\ (CONTROL northing - MEASURED northing)^2/n]}$

RMSEeasting = $\sqrt{\left[\sum (CONTROLeasting - MEASUREDeasting)^2/n\right]}$

 $RMSEr = \sqrt{[RMSEeasting^2 + RMSEnorthing^2]}$

RMSE accuracy = 1.7308 * RMSEr

Coordinates in State Plane Zone West Virginia South, North American Datum 1983, Units U.S. Survey Feet.

ORTHOPHOTO ACCURACY REPORT FOR 2-FOOT ORTHO AREA

POINT ID	CONTROL		MEASURED		DELTA (feet)		
TOINT ID	EASTING	NORTHING	EASTING	NORTHING	EASTING	NORTHING	HORIZ
113	2011712.780	111208.130	2011714.021	111207.760	-1.241	0.370	1.295
111	2075323.680	279070.610	2075325.426	279069.026	-1.746	1.584	2.357
125	1999843.810	245655.290	1999848.490	245653.700	-4.680	1.590	4.943
117RESET	1921219.640	400709.390	1921219.785	400708.064	-0.145	1.326	1.334

RMSE accuracy	3.030	Feet
RMSEr	1.751	Feet
RMSEnorthing	0.501	Feet
RMSEeasting	1.677	Feet

FGDC-STD-007.3-1998

 $RMSE northing = \sqrt{\left[\sum (CONTROL northing - MEASURED northing)^2/n\right]}$

RMSEeasting = $\sqrt{\left[\sum (CONTROLeasting - MEASUREDeasting)^2/n\right]}$

 $RMSEr = \sqrt{[RMSEeasting^2 + RMSEnorthing^2]}$

RMSE accuracy = 1.7308 * RMSEr

Coordinates in State Plane Zone West Virginia South , North American Datum 1983, Units U.S. Survey Feet.