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Abstract:
Resilience measurement continues to be a meeting ground between policy makers and academics. However,
there are inherent limitations in measuring disaster resilience. For example, resilience indicators produced by
FEMA and one produced by an independent academic group (BRIC) measure community resilience by defin-
ing and quantifying community resilience at a national level, but they each have a different conceptual model
of the resilience concept. The FEMA approach focuses on measuring resilience capacity based on preparedness
capabilities embodied in the National Preparedness Goals at state and county scales. BRIC examines commu-
nity (spatially defined as county) components (or capitals) that influence resilience and provides a baseline of
pre-existing resilience in places to enable periodic updates to measure resilience improvements. Using these
two approaches as examples, this paper examines the differences and similarities in these two approaches in
terms of the conceptual framing, data resolution, and representation and the resultant statistical and spatial
differences in outcomes. Users of resilience measurement tools need to be keenly aware of the conceptual fram-
ing, input data, and geographic scale of any schema before implementation as these parameters can and do
make a difference in the outcome even when they claim to be measuring the same concept.
Keywords: BRIC, comparing indicators, FEMA, resilience measurement
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1 Introduction

The 2017 Atlantic hurricane season was one for the record books. Within one month three Category 4 hurri-
canes made landfall in the US including the second most expensive disaster in the nation’s history (Hurricane
Harvey), another multi-billion-dollar hurricane (Irma) affecting Florida, US Virgin Islands and Puerto Rico,
and a deadly third hurricane that decimated Puerto Rico and the US Virgin Islands (Hurricane Maria). A year
later, the nation continued to suffer a series of billion dollar disasters culminating in Hurricanes Florence (Car-
olinas) and Michael (Florida panhandle), and California wildfires. The need to move from short-term disaster
relief to longer term and more sustainable efforts to build and enhance disaster resilience became obvious in
the aftermath of these events. But what does resilience to disasters actually mean in theory and in practice?

Superstorm Sandy in 2012 coupled with the far reaching US National Academies report (NAS 2012) on the
nation’s resilience to disasters ushered in a shift in federal disaster policy towards a more proactive approach,
one that fosters and enhances the “ability to prepare and plan for, absorb, recover from, and more successfully
adapt to adverse events” (NAS 2012, 1) – the report’s definition of resilience. The 2017–2018 disasters provided
a poignant reminder that enhancing resilience continues to be a national imperative now more than ever before.

Disaster resilience is now a key element in the US national security doctrine, formerly adopted in 2017,
and defines goals and objectives for improvements in abilities to withstand and recover from a wide range of
stresses or shocks that befall the county including natural hazards (US DHS 2018). Efforts underway within
the federal government to incorporate disaster resilience into programs and practices include the Department
of Housing and Urban Development’s (HUD) post-disaster recovery competitions based on their Rebuild by
Design Competition in the Hurricane Sandy affected area, and its subsequent national expansion through the
National Disaster Resilience Competition (US HUD 2015). Other federal initiatives include the National Insti-
tute of Standards and Technology (NIST) efforts in developing a community resilience planning guide (NIST
2016) and associated outreach materials (NIST 2019), and the multi-targeted all-agency programs within the
Department of Homeland Security’s Resilience portfolio focused on building a culture of preparedness for the
nation (US DHS 2018). Inherent in the establishment of federal policy is the need to describe resilience or at

Susan L. Cutter is the corresponding author.
© 2019Walter de Gruyter GmbH, Berlin/Boston.

1

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Cutter andDerakhshan DE GRUYTER

least a community’s capacity for resilience and then monitor progress towards achieving the goals of the fed-
eral policy. Monitoring progress requires some evidentiary approach, which in turn necessitates some form of
measurement.

This paper addresses some of the inherent difficulties in measuring disaster resilience based on existing
approaches with a policy-relevant focus on monitoring baseline resilience parameters in communities. Using
four characteristics: conceptual framing, operationalization of the concept, measurement scale, and outcome
via data visualization or mapping, we provide a comparison of two prominent US based place-based resilience
measurement schemes as exemplars. We are particularly interested in the compatibility and the distribution of
outcomes in terms of county and state rankings as well as their regional distribution.

2 Context and Meaning of Disaster Resilience

One of the reasons why resilience and its narrower construct disaster resilience are so popular is the vague-
ness of the terms, which enable broad and diverse conceptualizations and interpretations that in turn, make
resilience a relevant concept when applied to a wide range of differing contexts. Depending on the context,
resilience infers different attributes, properties, scales, meanings, and applications of the concept (Alexander
2013). Some researchers have gone so far as to question the basic utility of the idea by asking resilience to what
and for whom (Klein, Nicholls, and Thomalla 2003; Manyena et al. 2011; Manyena 2014; Cutter 2018), while
others use normative or empirical descriptions of resilience as a collection of attributes, assets, or capacities of
individuals, communities, places (Linkov et al. 2013; Weichselgartner and Kelman 2015). Some view resilience
solely as an outcome (bouncing back to what was) while others view it as a process and employ qualitative to
quantitative methodologies (Norris et al. 2008; Folke et al. 2010; Plough et al. 2013; Bogardi and Fekete 2018).
The appeal of resilience for many people, is in fact these different notions and perspectives, which makes un-
derstanding and measuring disaster resilience so complex.

There are a variety of measurement schemes and reviews focused on measuring disaster resilience from
local to national scales (Beccari 2016; Cutter 2016; Ostadtaghizadeh et al. 2015; Sharifi 2016; Johansen, Horney,
and Tien 2017; Cai et al. 2018), as well as approaches to validation and construction (Burton 2015; Bakkensen
et al. 2017; Jülich 2017; Cutter and Derakhshan 2018). However, there are no standard approaches to resilience
measurement, with every study promulgating its own depending on purpose. This is not surprising given the
very nature of resilience, especially the intrinsic measurement conflict between what is (empirically-determined
descriptions) and what could be (normative approach) based on some external goal or standard. The inconsis-
tencies in conceptual framing and goal of the measurement contribute to the lack of standardization of the
components, and the scale at which data are collected and the metrics are applied.

Since the publication of the 2012 National Research Council study, there have been a series of workshops
in the US focussed on how to measure resilience (NRC 2015; NASEM 2017, 2018), but no overall assessment
or comparison of existing approaches. This is partially a result of the paucity of resilience measurement stud-
ies, but more importantly the differing needs (locally-driven, consistency across communities, linkages to out-
comes) of users including policy makers. To overcome this deficiency, we selected two frameworks to compare
measurements of disaster relience based on three criteria: original intent (tracking the pre-existing resilience
of communities to measure progress over time); spatial scale (counties and/or states); and consistency in in-
put data sources (use of federal data). The two frameworks were the one developed by the Federal Emergency
Management Agency (FEMA) and the National Oceanic and Atmospheric Administration (NOAA) to mea-
sure resilience capacity at the state scale (MitFLG 2016), and the Baseline Resilience Indicators for Community
(BRIC) originally developed at the county scale (Cutter, Burton, and Emrich 2010; Cutter, Ash, and Emrich
2014, 2016). Before we describe our methods of comparison, we first provide some initial background on the
FEMA and BRIC schema themselves in terms of conceptual framing and units of analysis.

3 Background on FEMA Indicators and BRIC

The National Academies 2012 recommendations provided the impetus for the federal interagency Mitigation
Framework Leadership Group (MitFLG) to develop a set of common indicators to help communities track
progress towards achieving resilience. Originally led jointly by FEMA and NOAA the federal effort soon ex-
panded to include multiple federal agencies. Acknowledging the need for the federal government to help foster
local resilience capacity given the lack of locally-specific data and understanding, the challenge was to develop
a consistent framework for measurement to “help guide the development of useful measures, promote the iden-
tification and sharing of relevant data, and facilitate the collection of new data needed to fill critical information

2

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Cutter andDerakhshan

gaps” (FEMA 2019). The conceptual framing of the indicators is aligned with the National Preparedness Goal
and its ten core capabilities specifically those associated with recovery and mitigation (e.g. housing; health and
social services; economic recovery; infrastructure systems, natural and cultural resources; threat and hazard
identification; risk and disaster resilience assessment; planning; community resilience; and long-term vulner-
ability reduction) (MitFLG 2016).

The interagency indicators (hereafter referred to as FEMA indicators) consist of 32 variables in 10 categories
of community resilience consistent with the core capabilities mentioned above (Table 1). Using federal publicly
available datasets, 16 out of the 32 proposed measures have baselines (specific measureable criteria) in the
version (2016) we examined; the remaining 16 are proposed and awaiting further development. Furthermore,
of the 16 calculated indicators, 9 are at state levels of geography (minimum requirement), while 7 are at the
county scale (preferred). There are qualitative statements about how increases or decreases in the criterion
enhance resilience. There is no overall effort to create a summary resilience measure across all the indicators as
part of FEMA’s effort, rather the measurements are designed to track progress in each of the core capabilities
examined. The geographic distribution of each indicator is mapped in a visualization tool using its relevant
geography (county or state).

Table 1: Variables used in FEMA Community Resilience Approach.

Indicator Variable description Range Note

1. Housing condition County level percentage of
households living with at least
one of four severe housing
problems (5-year average)
(Inverted: Lower percentage is more
resilient)

3.33–66.78

2. Housing affordability County level percentage of
households that are cost
burdened (monthly housing costs
including utilities exceed 30% of
monthly income) (Inverted:
Lower percentage is more resilient)

5.0–48.44

3. Health care availability County level primary care
physicians per 100,000 residents

0.0–469.23 1 missing (Oglala Lakota county,
SD)

4. Healthy behaviors County level percentage of adult
population not participating in
leisure time physical activities
(Inverted: Participating is more
resilient)

59.4–90.7

5. Employment
opportunity

County level 3-year average
unemployment rate (Inverted:
Less unemployment is more
resilient)

1.16–25.3 1 missing (Kalawao county, HI)

6. Income County level per capita income 15,799–183,255 1 missing (Bedford county, VA)
7. Transportation
connectivity

State level percentage of public
transportation passenger
terminals with intermodal
connectivity

3.3–100.0

8. Transit accessibility States with <100% percent of
transit system stations in
compliance with accessibility
requirements of Americans with
Disabilities Act of 1990

0.0–100.0

9. Water sector emergency
support

States with Mutual Aid and
Assistance Agreements in place
through the Water/Wastewater
Agency Response Network
(WARN)

Yes/TBD Normalized as (1.0/0.0)

10. Water conservation State level per capita water use
for all domestic uses
(gallons/day) (Inverted: Less
water use is more resilient)

50.95–168.02
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11. Community
preparedness

State level number of
Storm-Ready and/or
Tsunami-Ready designated sites

0.0–77.0 1 missing (D.C.)

12. Mitigation planning State level percentage of
population residing in
communities covered by a
current local hazard mitigation
plan

43.9–100.0

13. Civic capacity State level percentage of
individuals surveyed who
performed volunteer activities
for or through an organization
during the preceding 12 month
period

17.4–46.0

14. Building codes State level percentage of
reporting communities that are
subject to one or more hazards
(seismic, hurricane or floods)
that have adopted building codes
with disaster resistance
provisions

0.0–97.14 1 missing (D.C.)

15. Higher standards State level percentage of insured
flood risk communities enrolled
in the Community Rating System
(CRS) with a CRS rating of Class
5 or better

0.0–5.88 1 missing (D.C.)

16. Mitigation investment Percentage of SBA home disaster
loan funds spent on mitigation
assistance (Eliminated from final
calculations due to large percentage
of missing data)

(−0.24)−3.34 1876 missing counties

The BRIC conceptualizes disaster resilience as the inherent characteristics and capacities within commu-
nities that enhance or detract from their ability to prepare for, respond to, recovery from, mitigate, or adapt
to hazards events or disasters (Cutter, Ash, and Emrich 2014), thus following the National Academies report
definition (NAS 2012). The place-based approach suggests that communities are a system of systems whereby
the various functions or capitals within a community are measureable, and then integrated across capitals to
produce an overall measure. Derived from the capitals approach (Ritchie and Gill 2011) to understanding com-
munity resilience BRIC uses 49 variables categorized into six distinct capitals (social, economic, institutional,
housing/infrastructure, environmental, and community capital) at the county unit of analysis (Table 2). The
purpose of BRIC is to establish a baseline of resilience at a discrete point in time in order to have a starting
point for monitoring progress over time and across space. It addresses the simple underlying question of how
do you know whether or not some policy intervention or program has made a difference in the resilience in
the community, if you have no set beginning point or baseline condition to start from. This intent is very simi-
lar to the FEMA indicators (establishing the beginning point with some type of goal statement), however, the
mechanisms whereby baselines are established differentiates the two approaches.

For each capital in BRIC, the input variables are normalized (using min-max procedures) to range from 0
(low resilience) to 1 (high resilience), and then averaged within each of the six capitals to produce a capital
score ranging from 0 to 1. To create the final summary score for the whole county (our unit of analysis), the
capital scores are summed so that the overall BRIC score has a theoretical range of 0–6, representing low to
high resilience, respectively (Cutter, Ash, and Emrich 2014). Once the overall scores are determined, mapping
counties by the total score or by each individual capital value facilitates examining their geographic distribution.

Given the differences in intent and conceptual framing, there are only two specific variables with a direct
overlap between the two schemes. The first is health care availability (an element of social resilience) measured
as the number of physicians per 100,000 persons (or 10,000 people in the case of BRIC). The other is employ-
ment opportunity, although measured slightly differently. The FEMA indicator uses a 3-year unemployment
rate (% unemployed) as the measure, while BRIC uses the inverse, or the 5-year employment rate (% employed),
conceptually arguing that employment is a positive characteristic of community resilience rather than unem-
ployment. Given these two independent approaches and input variables, how well do the two composite indices
conform to one another statistically and spatially?
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Table 2: BRIC Indicators (Cutter and Derakhshan 2018).

Resilience concept Variable description Range

Social resilience
 Educational attainment equality Absolute difference between % population over 25 with

college education and % population over 25 with less
than high school education (Inverted: less difference means
more equality, resilience)

−75.78 to
−0.05

 Pre-retirement age % Population below 65 years of age 51.6–96.7
 Transportation Access % Households with at least one vehicle 17.51–100.0
 Communication capacity % Households with telephone service available 70.32–100.0
 English language competency % Population proficient English speakers 49.05–100.0
 Non-special needs % Population without sensory, physical, or mental

disability
65.96–95.58

 Health insurance % Population under age 65 with health insurance 34.69–95.58
 Mental health support Psychosocial support facilities per 10,000 persons 0–142.14
 Food provisioning capacity Food insecurity rate (Inverted: lower insecurity is more

resilient)
4.6–37.5

 Physician access Physicians per 10,000 persons 0–878.58
Economic resilience
 Homeownership % Owner-occupied housing units 2.3–84.87
 Employment rate % Labor force employed 19.32–87.99
 Race/ethnicity income equality Gini coefficient (Inverted; lower coefficient is more resilient) −0.65 to −0.33
 Non-dependence on
primary/tourism sectors

% Employees not in farming, fishing, forestry, extractive
industry, or tourism

42.34–97.01

 Gender income equality Absolute difference between male and female median
income (Inverted; less difference means more equality,
resilience)

87.00–46006.00

 Business size Ratio of large to small businesses 0–0.23
 Large retail-regional/national
geographic distribution

Large retail stores per 10,000 persons 0–71.02

 Federal employment % Labor force employed by federal government 0–86.10
Community capital resilience
 Place attachment-not recent
immigrants

% Population not foreign-born persons who came to US
within previous 5 years

62.78–100.0

 Place attachment-native born
residents

% Population born in state of current residence 16.65–96.64

 Political engagement % Voting age population participating in recent election 0–100.0
 Social capital-religious organizations # affiliated with a religious organization per 10,000

persons
230.55–

17550.69
 Social capital-civic organizations # civic organizations per 10,000 persons 0–117.70
 Social capital-disaster volunteerism # Red Cross volunteers per 10,000 persons 0–56.47
 Citizen disaster preparedness and
response skills

# Red Cross training workshop participants per 10,000
persons

0–2859.20

Institutional resilience
 Mitigation spending Ten year average per capita spending for mitigation

projects
0.0068–2884.26

 Flood insurance coverage % Housing units covered by National Flood Insurance
Program

0–69.12

 Performance regimes-state capital Distance from county seat to state capital (Inverted; closer
is more resilient)

0–1102.04

 Performance regimes-nearest metro
area

Distance from county seat to nearest county seat within a
Metropolitan Statistical Area (Inverted; closer is more
resilient)

0–240.99

 Political and jurisdictional
fragmentation

# Governments and special districts per 10,000 persons
(Inverted: fewer districts, less fragmented is more resilient)

0–385.14

 Disaster aid experience # Presidential Disaster Declarations divided by # of
loss-causing hazard events for 10-year period

0–1.0

 Local disaster training % Population in communities covered by Citizen Corps
programs

0–60.97

 Population stability Population change over previous 5-year period (Inverted;
less change is more resilient)

−101.67–0

 Nuclear plant accident planning % Population within 10 miles of nuclear power plant 0–100.0
 Crop insurance coverage # Crop insurance policies per square mile 0–7.64
Housing/Infrastructural resilience
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 Sturdier housing types % housing units not mobile homes 37.13–100
 Temporary housing availability # vacant rental units per 10,000 persons 0–1516.16
 Medical care capacity # hospital beds per 10,000 persons 0–432.4
 Evacuation routes Major road egress points per 10,000 persons 0–165.72
 Housing stock construction quality % housing units built prior to 1970 or after 2000 40.21–97.70
 Temporary shelter availability # hotels/motels per 10,000 persons 0–107.20
 School restoration potential # public schools per 10,000 persons 0–93.96
 Industrial re-supply potential Rail miles per square mile 0–1.53
 High speed internet infrastructure % Population with access to broadband internet service 0–100.0
Environmental resilience
 Local food suppliers Farms marketing products through Community

Supported Agriculture per 10,000 persons
0–34.13

 Natural flood buffers % Land in wetlands 0–100.0
 Efficient energy use Megawatt hours per energy consumer (Inverted; less

consumption is more efficient and resilient)
7.94–124.59

 Pervious surfaces Average percent perviousness 0–99.94
 Efficient water use Water Supply Stress Index (Inverted; less stress is more

efficient and resilient)
0–17.84

4 Method for Comparing Approaches

To compare the two approaches, we first downloaded the raw data from the original data sources referenced in
the FEMA indicators and placed into an excel file. Similarly, we obtained the raw values for the BRIC variables
as well. Table 1 presents the value ranges and spatial coverage for the FEMA indicators. The most recent data
generally representing comparable time-period (2010–2015) were used in the analysis.

In order to compare the indicators between the two approaches some adjustments were necessary to nor-
malize and aggregate the variables for county and statewide comparisons. We normalized variables based
on min-max procedures (the BRIC method) with values ranging from zero to one, where one indicates more
resilience and zero means less resilience. The min-max normalization is useful because of its intuitive under-
standing, relative ease of computation, utility as a comparative ranking approach, and widespread use in social
indicators research (Tarabusi and Guarini 2013). Missing values are not included in normalization and assigned
a value of zero. For interpretation purposes, the higher the aggregated resilience score, the more resilience in
that state or county. Five variables in the FEMA approach needed inverting after normalization to make the
scales compatible, e.g. higher scores indicating more resilience (see Table 1). For example, housing affordabil-
ity as measured in the FEMA approach reflects those households whose housing costs are greater than 30%
of their monthly income. Places with more households (higher percentages) are interpreted as less resilience,
so we took the inverse of that which means the lower percentage of households with housing burdens reflects
greater resilience.

Spatial data coverage was problematic in comparing the two schemes. For example, Wade Hampton Census
Area in Alaska exists in the BRIC score for communities but is not included in FEMA indicators at the county-
scale. Thus, we eliminated this county in the comparative studies at the county scale. Second, county data
coverage in the FEMA approach was problematic with less than half (only 7 variables) having county-level
data. Of those seven variables, mitigation investment (percentage of SBA home disaster loan funds spent on
mitigation assistance), had missing data for 1876 counties (nearly 60% of all US counties). We eliminated this
indicator from the final resilience score computations, thus reducing the number of indicators used in FEMA
approach from the original 16 to 15.

Some of the variables were available at the county scale, while others were only at the state level. We aggre-
gated county-level data by computing a state average for all variables measured at the county level. The BRIC
index required this level of statewide aggregation for all 49 variables. In a sensitivity test of this aggregation
procedure, we found differences when using source material reported at the state level and our county averag-
ing approach for some individual variables. The differences are rooted in the normalization process itself and
whether data are normalized across 51 states/district or 3142 counties. Since county values account for more
of this variability given the larger range in the number, the averaging of normalized variables into the capitals
score and then aggregating and normalizing using the smaller range (1–50) at the state scale, the differences
are less apparent.

To compare state-level data to county scales, we disaggregated data by computing a county average and then
distributing that value to each county in order to preserve the mean and standard deviation of the state value.
There are some differences that are statistically significant here as well. A fuller discussion of these known
biases in aggregation and disaggregation procedures is in the discussion section of the paper.
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While the development of a composite index was not the intent nor part of the FEMA approach, we did
need an overall score in order to compare the two approaches and their results for comparative ranking and
mapping purposes. Summing normalized values for each indicator (15 in FEMA) or composite indicator set
(6 in BRIC) creates the final resilience score at both the county and the state scale of geography, which we use
in the comparisons. In the case of FEMA, the range of scores goes from 0 to 15, while in BRIC the theoretical
score ranges from 0 to 6 just like in the original formulation (Cutter, Ash, and Emrich 2014). In this manner, we
are using a composite index construction to compare the relative rankings of counties and states based on two
different place-based approaches to resilience.

Because each approach defines resilience differently, we hypothesize that there is no significant statistical
correlation between the BRIC and FEMA measurement schemes. However, since each one purports to measure
some aspect of disaster resilience, we suggest there may be some consistency in the geographic distribution
of their outcomes. In other words, when mapping aggregate values of resilience for the FEMA and BRIC ap-
proaches, there is some modest geographic alignment of states, but less so at the county level. We explore four
different reasons for the variability: framing and variable choice; measurement scale; index construction; and
mapping categories.

5 Results

There is considerable statistical variability between the two approaches as expected in terms of the data range,
average, and standard deviation of the scores. Both the statistical and spatial comparisons are examined first
for county-level data and then for data at the state level of geography for each of the two approaches – BRIC
and FEMA.

5.1 County-Level Resilience Score Comparisons

In the FEMA approach county-level resilience scores range from a low 5.049 (Issaquena County, MS the least
resilient), to 9.804 (Holmes County, FL, the most resilient); with an average score of 7.863 and a standard devi-
ation of 0.737. In contrast, BRIC county-level scores range from a low of 2.059 (Aleutians East, AK) to 3.324 (St.
Charles, LA); with an average score of 2.73 and a standard deviation of 0.15. There is a statistically significant
difference between the means of community resilience scores based on the two approaches (t = −368.84, p <
0.001) as expected.

The community resilience scores of FEMA and BRIC are not statistically correlated at the county-level (r
= 0.047, p < 0.01). There are also no overlaps between the most and least resilient counties based on the two
approaches evaluated and their comparative rankings (Table 3). Further, the examination of counties in the
upper and lower 99th percentile ranks also does not show any geographic compatibility either. In the FEMA
construction 30 out of the 32 most resilient counties are from Florida, while 26 out of the least resilient are from
Mississippi. This is very different than in BRIC, which shows a much broader geographic pattern (Figure 1).

Table 3: Top 5 Counties with Highest and Lowest FEMA and BRIC Scores.

FEMA BRIC

Rank County, State FEMA score Rank County, State BRIC
score

Most resilient
 1 Liberty, Florida 9.804 1 St. Charles, Louisiana 3.234
 2 Baker, Florida 9.799 2 St. Bernard, Louisiana 3.149
 3 Taylor, Florida 9.775 3 St. John the Baptist,

Louisiana
3.139

 4 Holmes, Florida 9.770 4 Brown, Minnesota 3.113
 5 Glades, Florida 9.759 5 Putnam, Ohio 3.111
Least resilient
 3141 Issaquena, Mississippi 5.049 3141 Aleutians East, Alaska 2.059
 3140 Albany, Wyoming 5.298 3140 Kalawao, Hawaii 2.105
 3139 Oktibbeha, Mississippi 5.419 3139 North Slope, Alaska 2.143
 3138 Quitman, Mississippi 5.476 3138 Denali, Alaska 2.145
 3137 Maui, Hawaii 5.485 3137 La Paz, Arizona 2.156
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The mean FEMA scores = 7.863, Std. Dev. = 0.737. The mean BRIC scores = 2.73, Std. Dev. = 0.15.

Figure 1: Resilience at County-Scales for FEMA (Left) and BRIC (Right) using Five Mapping Categories Based on Stan-
dard Deviations (Top) and Natural Breaks (Bottom) Mapping Classifications. Source: Authors

Figure 1 illustrates the spatial patterns of resilient counties, using both a five class distribution of resilience
scores based on standard deviation and a different classification system based on natural breaks. Classification
for mapping purposes based on standard deviations preserves the underlying distribution of the data around
the mean, with equal value ranges (e.g. one-half standard deviation, one standard deviation). Natural break
is another classification method for mapping based on unevenly distributed clusters of cases defined by large
differences in the data values. Natural breaks categories preserve the data’s spatial attributes, while map classes
using standard deviations preserve the underlying statistical properties including assumptions about normally
distributed data. Counties in the central US score high according to both methodologies, while counties in
western states have lower scores in both approaches. As was the case with the lack of statistical associations
between the scores using both approaches, the spatial distribution also shows considerable variability between
the two methods.

5.2 State-Level Resilience Score Comparisons

At the state scale, Iowa is among the top five most resilient states in both approaches, while Hawaii ranks among
the five least resilient states (Table 4). Overall, the state rankings are dissimilar. The difference between the mean
scores by state in the FEMA and BRIC efforts is statistically significant (t = −411.23, p < 0.001) which also holds
true for the standardized score means (t = 79.46, p < 0.001). As was the case with the county-level analysis, there
is virtually no correlation between the two approaches (r = 0.051, p < 0.01) in terms of the summary scores.

Table 4: Top 5 States with Highest and Lowest FEMA and BRIC Scores.

FEMA BRIC

Rank State FEMA score Rank State BRIC
score

Most resilient
 1 Florida 9.308 1 Minnesota 2.955
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 2 Iowa 8.754 2 District of Columbia 2.944
 3 Washington 8.605 3 Iowa 2.895
 4 Virginia 8.591 4 Connecticut 2.886
 5 Texas 8.581 5 Massachusetts 2.881
Least resilient
 51 Hawaii 5.777 51 Alaska 2.357
 50 Mississippi 5.966 50 Nevada 2.430
 49 Wyoming 6.045 49 Hawaii 2.486
 48 Massachusetts 6.426 48 Arizona 2.488
 47 Colorado 6.578 47 New Mexico 2.590

From a spatial perspective as well, there is little regional agreement between the two approaches at the state
scale. For example, in the 5-category classification using standard deviations, only Hawaii (low resilience),
Oregon, California, Arkansas, and Alabama (low-mediums resilience), Kentucky and South Carolina (average
resilience), and Illinois (medium high resilience) appear in the same category in both approaches, roughly 16%
of the states.

Using the natural breaks classification approach in mapping, there is a bit more consistency with roughly
26% agreement in state ranks. The FEMA natural breaks map shows a bit more diversity in the distribution of
resilience by state, while BRIC tends to concentrate states as either medium low (South to the West) or medium
high (Upper Great Plains to Northeast) (Figure 2).

Figure 2: State Comparisons in Resilience between FEMA (Left) and BRIC (Right) Constructions using Five Mapping Cat-
egories based on Standard Deviations (Top) and Natural Breaks (Bottom) Mapping Classifications. Source: Authors

Another way to examine the spatial consistency (or lack thereof) between the two approaches is by showing
the alignment of scores into concordant (high-high, low-low) and discordant (high-low, low-high) pairs based
on their composite values on FEMA and BRIC. As shown in Figure 3, 29 states are in alignment in the rankings
for the natural breaks categorization (20 in upper right quadrant or high-high placement in both; and 9 in the
lower left quadrant, low-low placement on each scale). Based on the plot, states tend to score slightly higher on
BRIC indicators compared to FEMA ones.
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Figure 3: Quadrant Analysis of FEMA and BRIC State Scores Showing Similar (Concordant) and Different (Discordant)
Pairings.
The upper right quadrant shows states that were high on both the FEMA and BRIC constructions, while the lower left
quadrant shows commonly in lower-scoring states on both. The upper left quadrant includes states that scored high on
the FEMA approach, but low on BRIC, while the lower right quadrant shows states doing better on BRIC (higher scores)
when compared to FEMA. Source: Authors

6 Discussion: Variability in Measurement Outcomes

The variability in outcomes (the scores and spatial distribution) between the two approaches is a function of
four elements: conceptual framing and variable choice; measurement scale; index construction methods; and
data visualization (mapping). First and foremost, the conceptual framework for any index entails not only the
development of the framework itself, but the selection of variables to operationalize it. The design of the FEMA
disaster resilience framework is to measure community resilience capacity and its alignment with the core
capabilities under the National Preparedness Goal (MitFLG 2016). The primary themes in determining baseline
community resilience include: housing, health, economic, access and functional needs, community planning,
and social connectedness. The methodology used as a cross-walk to gauge the efficacy of existing capabilities,
prioritize capacity building strategies, and chart progress towards achieving resilience at the national scale. The
focus on capabilities and the need to compare at state and county scales led to the selection of relevant variables
and the use of federal data sets.

Like FEMA, BRIC also attempts to measure baselines for disaster resilience, but uses a different concep-
tualization derived from the capitals contributing to resilience – social, economic, institutional, housing/in-
frastructure, community capital, and environmental. Variable selection matched each of the six capital areas
and known drivers of community resilience as defined by the extent literature. Data availability from national
sources at the county scale such as the US Census was also a consideration in the selection of variables. While
both employed a deductive approach to the conceptual framing, the choice of specific variables differed. In
the case of BRIC variable selection was governed by theoretically-informed correlates of resilience based on
prior research studies and data availability, while the FEMA variable selection was driven by the best available
federal data sets that connected to each of the core capabilities and mission areas – recovery and mitigation.

The second factor contributing to variability between the two approaches is the unit of analysis for the data
collection. The FEMA approach uses a combination of state-level indicators which mask sub-state variability
for many of its thematic areas. At least half of the FEMA variables are at the state scale of measurement. In
contrast, BRIC uses county-level data for all variables. The different units of measurement lead to data inter-
pretation biases known as the ecological fallacy and individual fallacy whereby assumptions are made that
state averages extrapolated to county-level units represent the same phenomena (ecological fallacy), and that
county aggregation to state levels also adequately captures state-level phenomena (individual fallacy), despite
the underlying enumeration unit (Longley et al. 2015). We further intentionally compound the ecological and
individual fallacies by aggregating BRIC to a statewide average, and disaggregating FEMA statewide variables
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to county-level scales in order to effectively compare the two statistical and spatial outcomes of each framework.
For example, as BRIC data is available at both county and state levels, we compared the ranking of states using
state-level raw data and county-level raw data, which indicated a change in the ranking for some of the states.
The ranking for states like New York, Maine, DC, and Rhode Island would show a higher resilience ranking
when using county level data to compute statewide values, while states like Wyoming, Utah, Montana, and
Nebraska would show a lower resilience ranking. Therefore, the unit of analysis and scale of measurements
can directly influence the results of the comparisons.

The third element contributing to difference is the basic construction of the metric itself. For example, there
is no attempt to aggregate all the indicators into one summary measure as a comprehensive look at overall
resilience in the FEMA approach. Instead, the FEMA indicator framework provides a baseline for each of the
selected indicators and a descriptor of a desired tracking progress outcome. For example, the cost-burdened
household variable is the percentage of households where the monthly housing costs including utilities exceed
30 percent of monthly income. This indicator shows the US 5-year average (2008–2012) based to be 32 percent,
with a range of 22–40 percent among the states (MitFLG 2016, B-18), but when using county-level data (repre-
sented in the project map viewer) the range is from 5 to 48 percent. A reduction in this percentage over time
would indicate progress towards building housing-related community resilience capacity by improving hous-
ing affordability, but there is no explicit target of how much reduction is needed to say progress is being made.
In order to compare the two approaches, however, we needed to create some type of composite measure that
would permit spatial and statistical comparisons. We acknowledge that this is somewhat problematic insofar as
it presumes that all the variables are discrete and not interdependent. In computing a single score to represent
the complexity of resilience (without any internal validation), we have imparted this implicit assumption to the
FEMA approach.

The conceptualization in BRIC stems from the notion that all of these capitals are important drivers in dis-
aster resilience, but in some places, some capitals may be more pronounced. Unlike FEMA, BRIC sums all the
capitals (based on the mean score within each) in order to derive an aggregate number to compare one place to
another. Further, the construction of BRIC went through a rigorous internal validation in its original construc-
tion (Cutter, Burton, and Emrich 2010; Cutter, Ash, and Emrich 2014). The overall score determines the baseline,
with a temporal capability for assessment over time to discern changes in overall levels or among the driving
factors themselves. For example, drilling down into an individual capital illustrates the driving factors behind it
(and its contribution to the overall score) and highlights where investments can improve resilience based on the
capital involved. For example, consider two of the counties in the lowest 99th percentile of resilience, Imperial
County, California and Glades County, Florida. Both are prime agricultural regions with expansive inland wa-
terbodies within their boundaries. Glades County has a significantly lower population and population density
than Imperial County, yet their BRIC scores are similar – 2.273 for Imperial and 2.350 for Glades. The driving
factors behind disaster resilience in Glades County are environmental, followed by social, and institutional. For
Imperial County the drivers of resilience are social, economic, and environmental. The community capital in
Imperial County is the lowest (and therefore the one where enhancements could improve the overall score). In
the case of Glades County, infrastructure/housing is the lowest and again an area where improvements would
garner overall increases in overall resilience in that county.

The last element contributing to the variability between the FEMA and BRIC approaches is the visualization
of the data. For FEMA, a web-based viewer is available showing the geographic distribution of each indicator
using choropleth maps. There is no documentation on the classification system used for the map categories,
but it appears as a four-class categorization based on natural breaks in the data values for both county and
state data sets (MitFLG 2016). BRIC visualizes its data also using a choropleth map but employs a standard-
deviation classification system based on the distribution of the underlying county data (Cutter, Ash, and Emrich
2014, 2016). For the purpose of comparison, we visualized the FEMA and BRIC data in two ways – first as
standard deviations from the mean; and then using natural breaks. Both preserve the natural distribution of
the underlying data values, but natural breaks maximize the differences in data values between the classes,
while standard deviations preserve the statistical distribution. The resultant maps vary significantly in their
representation of resilience scores between FEMA and BRIC at both the county and state levels of geography
(see Figure 1 and Figure 2). The choice of mapping categories is as important consideration in representing
geospatial data on a map in order to reduce misinterpretations (Monmonier 2018).

7 Utility of Measurement

Engagement with the resilience concept is important from not only from a scholarly view but also from a pol-
icy perspective. In many respects the policy interest in disaster resilience is ahead of the science of disaster
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resilience, most notably its measurement. As of yet, there is little consensus on the definition of community
resilience or its measurement. For example, the NIST community resilience planning guide for buildings and
infrastructures is one tool to help communities improve their resilience (NIST 2016). The guide has a six step
planning process to help local jurisdictions plan for increased resilience by aligning resilience goals with their
expectations of the performance of the built environment in meeting basic community functions such as public
safety, transportation, water infrastructure, and so forth. The resilience is determined based on the length of
time post-event to recover these essential services and functioning infrastructure (NIST 2016). Within the NIST
planning guide there is no baseline measure of pre-existing resilience at community levels which might be
useful for informed decision making and developing aspirational goals to become more resilient.

The FEMA approach provides a framework for compiling resilience indicators and tracking changes in them
at the state scale. It is unclear how this effort can inform resilience decisions at either the federal or state level
in its present construction. Inasmuch as the separate indicators provide some useful data points (although
lacking recent data for many of the variables) that could be monitored periodically, without any explicit targets
for improvement the use of the FEMA tool seems unlikely for state and local entities. If the effort was re-aligned
to focus on meeting the target goals produced by the Sendai Framework for Disaster Risk Reduction (SFDRR)
(United Nations 2016) to advance risk reduction and build resilience for example, there would be a greater
likelihood of its utility, but only for reporting national progress towards meeting the SFDRR global targets. A
state by state level analysis of the SFDRR indicators and targets might prove useful for federal decision makers in
terms of regional investments in lessening the impact of disasters before an event occurs, as well as determining
the equal access to mitigation and preparedness resources under FEMA’s whole community concept. Whether
or not the FEMA tool leads to improved resilience is unknown at present given it is still in the experimental
stage. However, the approach has led to a recognition of the need for more robust datasets at the federal level
to support state and community resilience efforts.

Making a similar criticism of BRIC’s utility to resilience decision making is equally important. However,
there is a greater likelihood of BRIC’s usefulness because of the spatial scale (county), ability for period updates
(to track progress over time), and comparative representation of both individual drivers (capitals) of resilience
and overall composite scores that can examined within and between counties and states. In fact, a new tool
from FEMA, the National Risk Index (FEMA 2017) specifically designed to visualize and compare risks across
the nation at state, county, and sub-county scales uses BRIC as one of the four main input datasets. While not
fully operational, the National Risk Index is clearly moving in the direction of providing an online tool capable
of integrating probabilistic assessments of hazard likelihood along with spatial data on social vulnerability, the
built environment, and community resilience. However, many of BRIC’s input variables reflect a top-down ap-
proach with characteristics not readily changeable by state and local actions. A rethinking of resilience metrics
that combine top-down and bottom-up baseline indicators may be more fruitful and reflective of real actions
to monitor and enhance community resilience in the US especially at sub-state levels of geography.

8 Conclusion

This paper illustrates two different tools – FEMA and BRIC – that seemingly purport to measure resilience, but
are in fact measuring very different and diverse aspects of disaster resilience. This nuanced point is important
as both attempts are conceptually-framed, but ultimately it is the choice of variables (that operationalize the
framework), scales of measurement, and outcome (construction of the tool, mapping the outcome) that distin-
guish between the two. The statistical and spatial differences observed in this analysis are related to the scale
of measurement of the initial indicator (county versus statewide averages), the latter showing less differenti-
ation than the former. The variable choices are defendable in both schemes, but reflect different underlying
conceptualizations on the meaning of resilience. Finally, the spatial representation of the comparisons may in-
deed be a function of the measurement scale of the underlying data which produces a state-centric pattern,
aggregation/disaggregation biases (averaging county BRIC to statewide scores), but could also be due to the
data visualization especially the mapping categorization employed (standard deviation versus natural breaks).
Such differences are important to recognize especially when choosing an approach or index used for decision
making and operational purposes.

While the results are not surprising or as significant as we had hoped, they do point to a number of needed
advances in resilience metrics from the point of view of public policy. The first issue is data fidelity. To be
useful, data must be comparable across local scales (counties or smaller enumeration units). This means that
input data into whatever schema is being used to measure or monitor resilience must be consistent across the
US. In this respect, the intent of the FEMA approach to provide federal data sets for localized use in resilience
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and to develop new ones is important, and hopefully stimulates the collection of new data related to community
resilience across federal agencies.

The second issue involves the indicators themselves and the reporting scale. In order to be efficient in the
effort to provide federal datasets for localized use especially in the resilience arena, there should be some stan-
dardized understanding of what should be measured, how often, and by whom. What are the essential (and
measureable) elements in contributing to community resilience? While some have tried to identify core indi-
cators (Cutter 2016; NIST 2016; NASEM 2017, 2018), there is no consensus as of yet. For policy purposes, it
seems attractive to use federal datasets to insure data comparability, but for building capacity and defining re-
silience as a process, perhaps other information gathering approaches would be most useful – building disaster
resilience from the bottom up rather than top down.

Finally, some thought as to whether or not such an elusive concept such as disaster resilience can be effec-
tively and efficiently measured is warranted. As noted in the National Academies (2012) report,

“The process for improving resilience is dynamic, adaptive, and transparent and acknowledges the exis-
tence of interconnected and interdependent sets of social, economic, natural, and manmade (sic) systems
that support communities…No single sector or entity has ultimate responsibility for creating the foun-
dation and driving the engine of resilience. These are shared responsibilities (NAS 2012, 211).”

Perhaps a more salient challenge for the developers of resilience metrics is to elucidate in a transparent way re-
sponsiveness to the concerns emanating from three foundational questions. Why does resilience measurement
matter? Resilience to what? And resilience for whom? Such questions not only drive the conceptual framing of
policy-relevant resilience approaches, but ultimately may stimulate new thinking and utilization of innovative
data and methods.
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