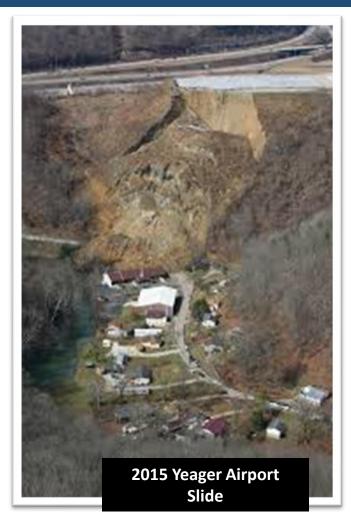
Statewide Hazard Assessment

Landslide Risk Assessment

Maneesh Sharma and Kurt Donaldson

West Virginia GIS Technical Center West Virginia University Morgantown, WV 26505

Maneesh.Sharma@mail.wvu.edu Kurt.Donaldson@mail.wvu.edu

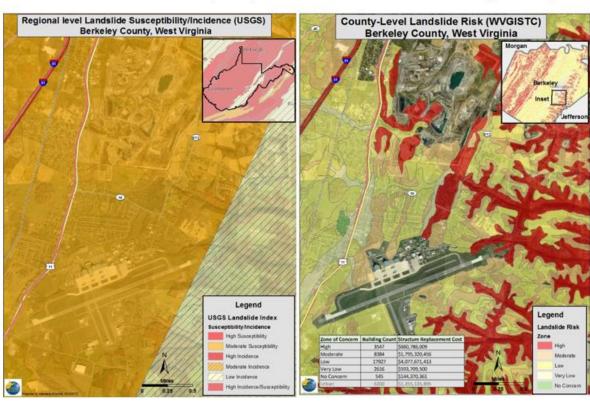

Landslide Risk Assessment

Goals

- Develop landslide inventory
- Create valid landslide models for specific WV regions
- Generate county-level resolution landslide maps
- Create an interactive web map application for displaying landslide models and variables
- Use the new landslide models and information to update the State Hazard Mitigation Plan

Did you know?

Landslides are the #2 Hazard in West Virginia


Landslide Maps – Old versus New

New Way – More Detailed

COUNTY LANDSLIDE MAP (WVGISTC)

Old Way - Very Generalized

REGIONAL LANDSLIDE MAP (USGS)

Landslide susceptibility map showing generalized USGS map and more detailed prototype map

Landslide Risks

Buildings Exposed to Landslide Risks

Zone of Concern	Building Count	Structure Replacement Cost
High	3547	\$660,786,009
Moderate	8384	\$1,795,320,456
Low	17927	\$4,077,671,413
Very Low	2616	\$593,709,500
No Concern	545	\$144,370,361
*Urban (No relevant attributes)	6200	\$1,355,135,895

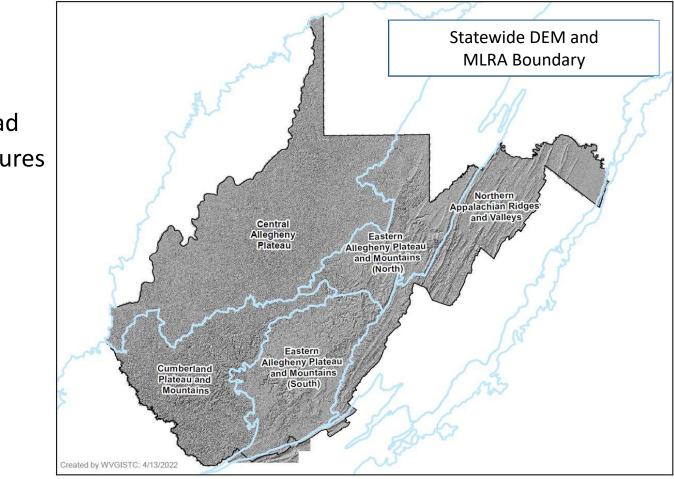
Risk Assessment table showing building counts along with estimated replacement costs in landslide zones of concern

Landslide Study Limitations

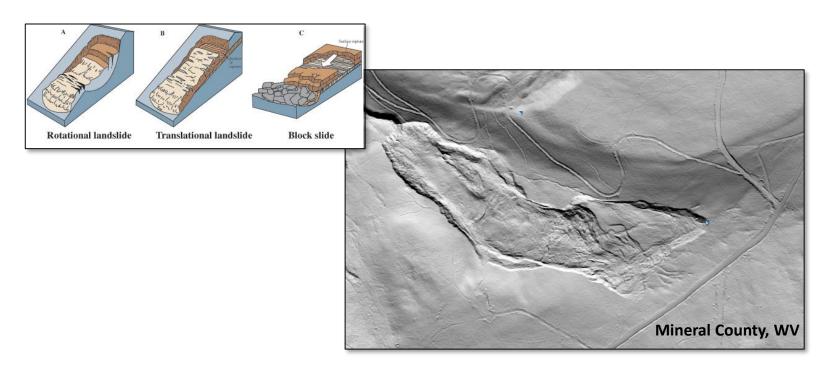
Limitations

- 1. This study is suitable for overview planning-level and general emergency services planning
- 2. The risk analysis for roads should be used in conjunction with site-specific risk analysis performed by WV Department of Transportation
- 3. This study has **NOT** been done for, and may not be suitable for legal, design, engineering, or site-preparation purposes.
- 4. This study can **NOT** substitute for site-specific investigations by qualified practitioners. Landslide risk is complex and continually changing. Although other existing studies may provide more precise and comprehensive information, *detailed original site investigations are normally an essential best practice for public safety, sustainability, and financial viability.*

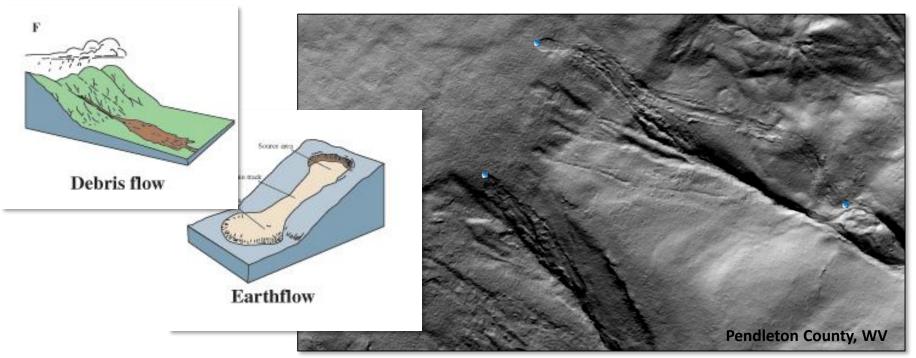
- 1. 159,247 landslide features inventoried
 - I. 66,151 landslide initiation points mapped using high resolution (1- or 2-m) LiDAR.
 - II. 46,330 landslide polygons digitized based on <u>WV Geological</u> and Economic Survey 1976 study.
 - III. 41,307 landslide polygons digitized based on a USGS 1975-1985 study.
- 2. Most common landslide Slides and slumps
- 3. Future work Landslide mapping in areas where LiDAR coverage was incomplete; LiDAR for these areas delivered by FEMA in December 2021.

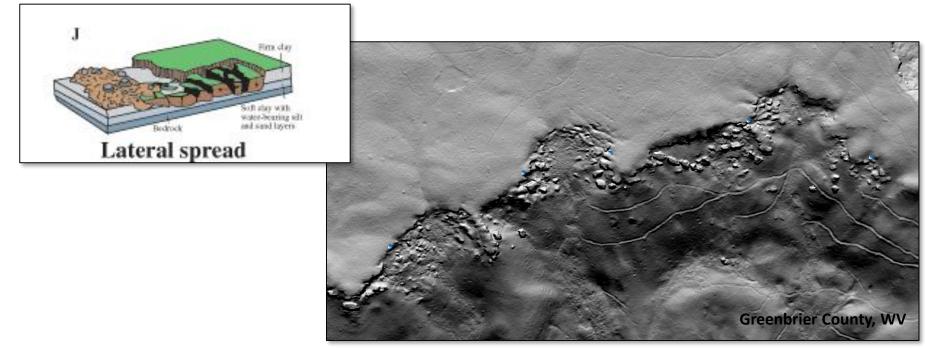

#	Agency	Year	Author or Source Agency	Title/Description	General Location	Purpose	Total Incidence Data
1	WVGES	1973	Landers and Smosna	Final Report on Landslides of July 9, 1973 in Kanawha City Area of Charleston, West Virginia	Charleston, West Virginia	Landslide mapping	10
2	WVGES	1976- 80	Lessing et al.	WV Landslides and Slide-Prone Areas; funded by Appalachian Regional Commission	Statewide (39 topo quads)	Landslide mapping	46,330
3	USGS	1978- 85	USGS (various)	Landslide Quad Maps: Open File Maps	Statewide (382 topo quads)	Landslide mapping	41,307
4	USGS	1993	Jacobson et al	U.S. Geological Survey Bulletin 1981: Geomorphic studies of the storm and flood of November 3-5, 1985, in the upper Potomac and Cheat River basins in West Virginia and Virginia	Cheat and Potomac River basins; Wills Mountain Anticline; Eastern WV	Research study (1985)	3,571
5	WVU	1983- 97	WVU	Landslide incidences with Images	Statewide	Instruction & landslide inventory	46
6	WVU	1996	Kite and Grubb	Update of 1976 Landslide Maps, Morgantown North and South Quadrangles	Morgantown, West Virginia	Landslide inventory	41
7	WVU	2008	Konsoer et al	LiDAR, GIS, and multivariate statistical analysis to assess landslide risk, Horseshoe Run watershed, West Virginia	Horseshoe Run Watershed, Tucker County	Surficial Geology Mapping	149
8	NPS/WVGES	2014	Yates and Kite	Unpublished Digital Surficial Geologic Map of Bluestone National Scenic River and Vicinity, West Virginia (NPS, GRD, GRI, BLUE, BLUS digital map) adapted from a West Virginia University and West Virginia Geological and Economic Survey Open File Map by Yates and Kite (2014)	Bluestone National Scenic River and Vicinity	Surficial Geology Mapping	12
9	NPS/WVGES	2015	Yates and Kite	Digital Surficial Geologic Map of New River Gorge National River, West Virginia (NPS, GRD, GRI, NERI, NERS digital map) adapted from a West Virginia University and West Virginia Geological and Economic Survey Open File Report map by Yates and Kite (and Gooding) (2015)	New River Gorge National River	Surficial Geology Mapping	212
10	WVDOT	2016	Geospatial Transportation Information (GTI) Section	Road landslide inventory	Statewide	Landslide inventory	1,406
11	WVDHSEM	2017	State Hazard Mitigation Office	FEMA Buyout Properties for Landslides	Southern West Virginia	Landslide mitigation	12
12	WVU	2022	WVGISTC	Statewide Landslide Risk Assessment; Funded by FEMA and WV Division of Homeland Security and Emergency Management	Statewide	Landslide risk assessment	66,151

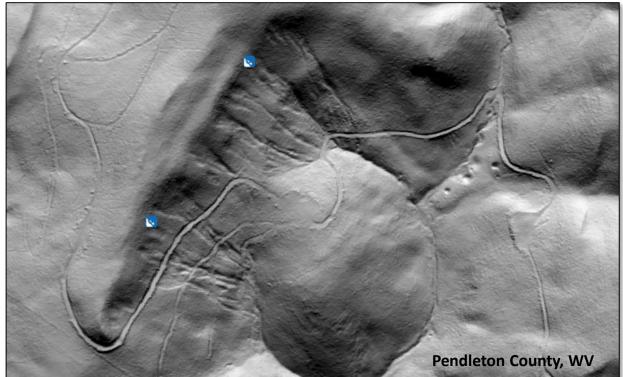
159,247 *landslide features*


Landslide mapping from new LiDAR-derived DEM

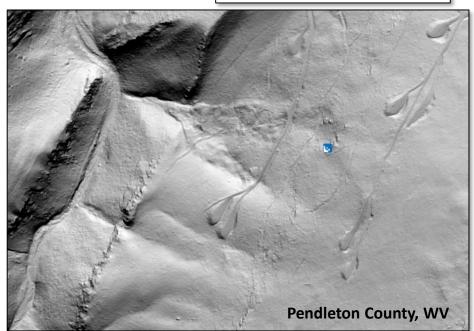
Identifying following types of landslides


- Slide
- Fall
- Flow
- Lateral Spread
- Multiple Failures
- Unknown


 Slide (includes rotational and translational movement)*: mass movements, where there is a distinct zone of weakness that separates the slide material from more stable underlying material


• **Debris Flow*:** A form of rapid mass movement in which a combination of loose soil, rock, organic matter, air, and water mobilize as a slurry that flows downslope; they are often associated with steep gullies, and debris-flow deposits are usually indicated by the presence of debris fans at the mouths of gullies

• Lateral Spread*: When coherent material, either bedrock or soil, rests on materials that liquefy, the upper units may undergo fracturing and extension and may then subside, translate, rotate, disintegrate, or liquefy and flow; usually occur on very gentle slopes or flat terrain



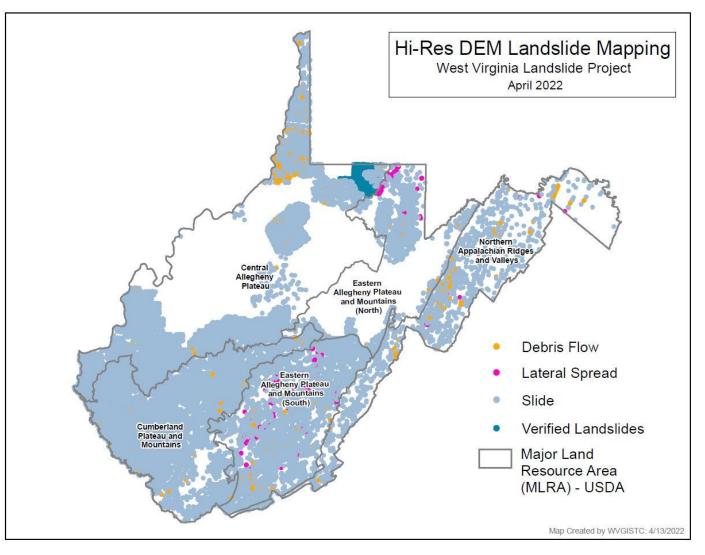
 Multiple Failures: This classification is used when multiple (>4) failures, usually small debris flows, occur in a restricted area

- Fall*: Abrupt movements of masses of geologic materials, such as rocks and boulders, that become detached from steep slopes or cliffs
 - Rockfall Topple

• Undetermined: Some failure is present, but it is not possible to determine the type of movement

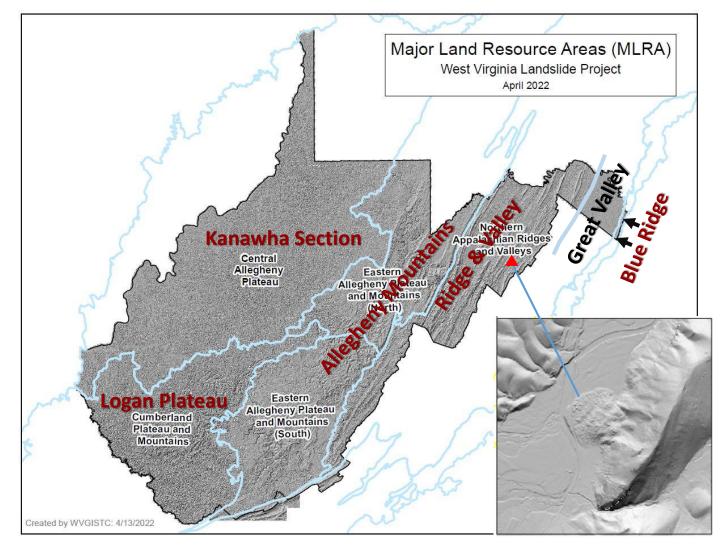
Type of Movement	Number of user identified points	Percentage of user identified points	Description
Slide	64,800	97.9	A zone of weakness separates the slide from the underlying material; can be translational or rotational
Fall	12	.02	Rocks or other geologic materials dislocate from steep slopes
Debris Flow	882	1.3	Fluid mobilizes material into a slurry that flows downslope; often associated with gullies or steep channels
Lateral Spread	313	0.5	Extension along very shallow or horizontal slopes which causes material to break into block-like shapes
Multiple Failures	125	0.2	Usually a combination of multiple small debris flows in a restricted location
Undetermined	19	0.03	Some failure is clearly present, but it is difficult to determine the type of movement

WV GIS TC Landslide <u>Mapping</u> 2018-April 2022

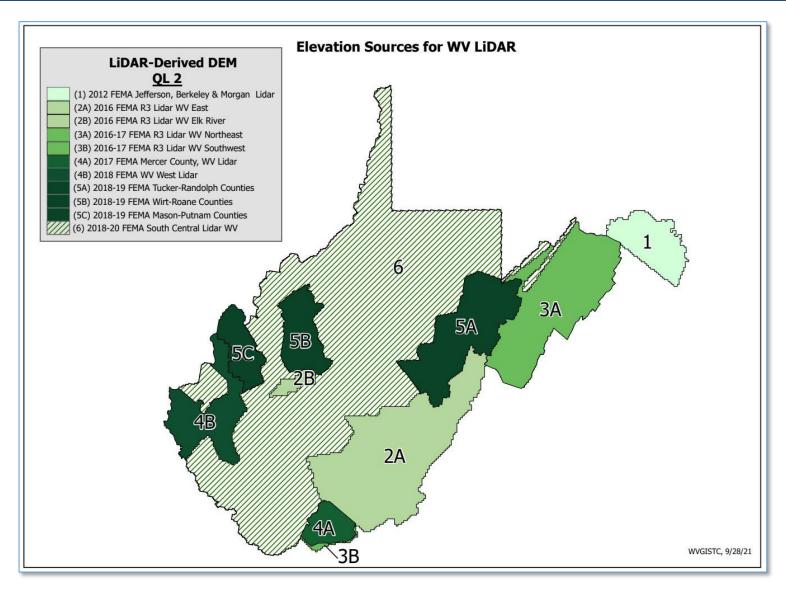

WV GIS TC Mapping on LiDAR-Based DEMs

- 66,151 Failures (≥10 m wide) Most from 1 m DEMs
- 882 Debris Flows
- 313 Lateral Spreads
- 64,800 Other Failures
 >97 % "Slides" (or Slumps)

Few Rock Falls Identified

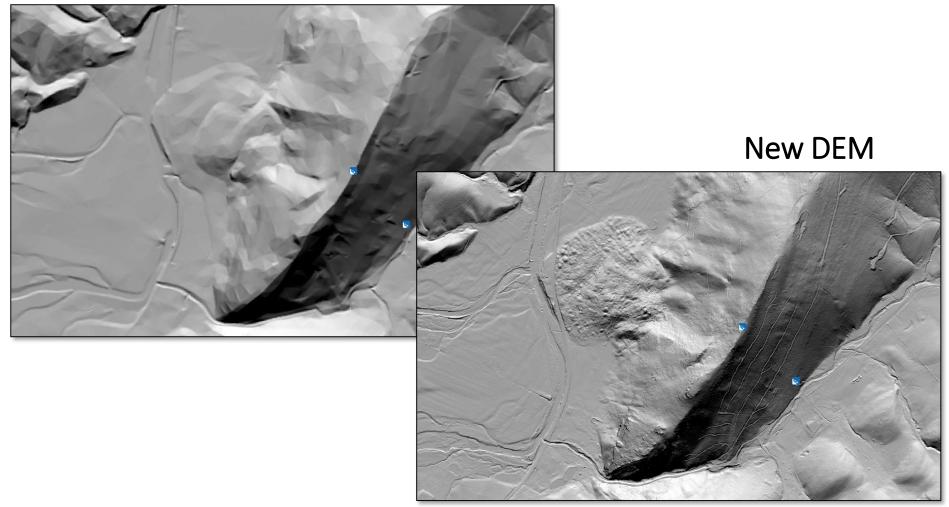

Mapped Landslides Verified on best available DEMs

• 1,082 WVGES (1976-80) Monongalia Co. Slides



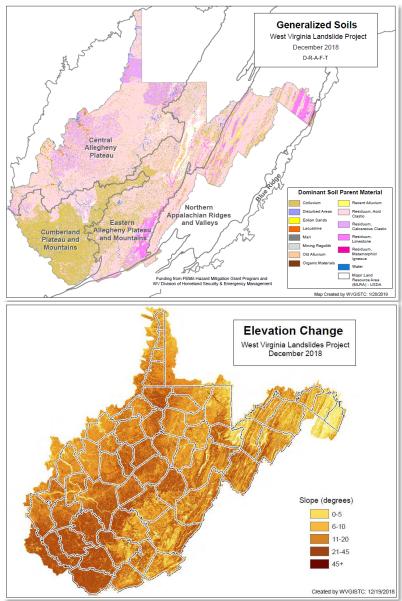
Mapping Landslides from new DEM

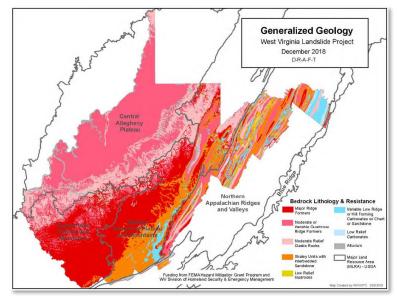
FEMA purchased statewide Quality Level 2 lidar for the entire State that will improve the mapping of existing landslides. Lidar-derived products include 1-meter DEM and 1-foot Contours

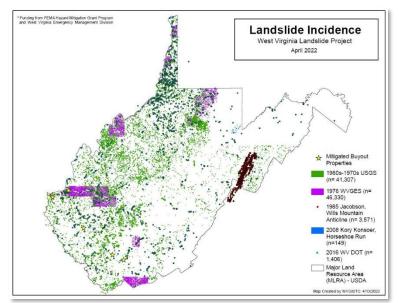

Mapping Landslides from new DEM

Best-Available Elevation Sources for West Virginia: <u>https://www.mapwv.gov/flood/map/docs/WV_FloodTool_ElevationSource_Metadata.pdf</u>

Mapping Landslides from new DEM


Old DEM

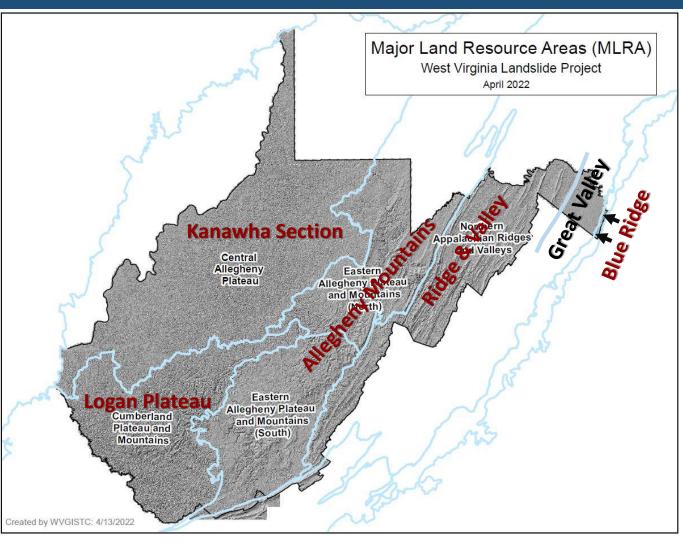



Comparison of Old and New 1 meter DEM

- 1. Landslide susceptibility modeling
 - I. Performed using machine learning
 - I. Random forest method most efficient
 - II. Performed for various <u>MLRA's</u> to minimize heterogeneity in physiographic conditions that may influence landslide susceptibility
- 2. Main Landslide contributing factor- Slope, soil type, and geology
 - I. Steeper slopes, unconsolidated soils, and less resistant rock units like shale and siltstone will increase landslide susceptibility.
- 3. Anthropogenic disturbance contributes heavily to landslide risk
- 4. Future work Rerun models after new LiDAR-based landslide mapping is complete.

The West Virginia University Study Team includes Dr. Steve Kite (Geomorphologist), Dr. James Thompson (Soil Scientist), Dr. Aaron Maxwell (Geologist/Modeler), and Dr. Maneesh Sharma (Geologist/GIS)

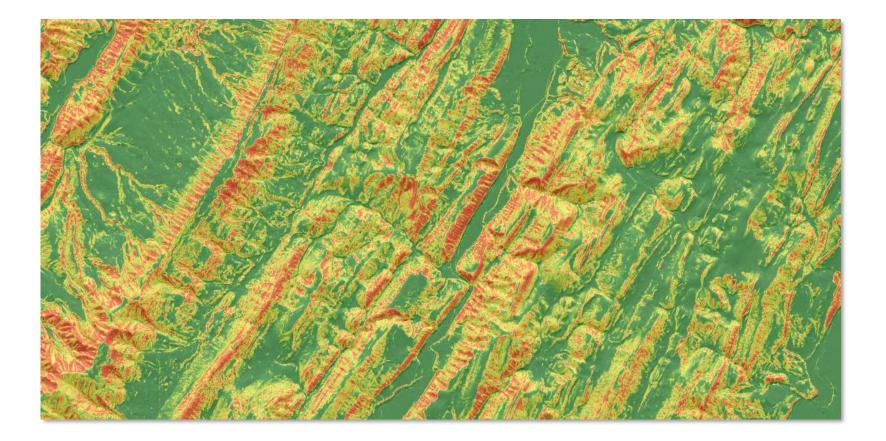
West Virginia Physiography & NRCS MLRAs

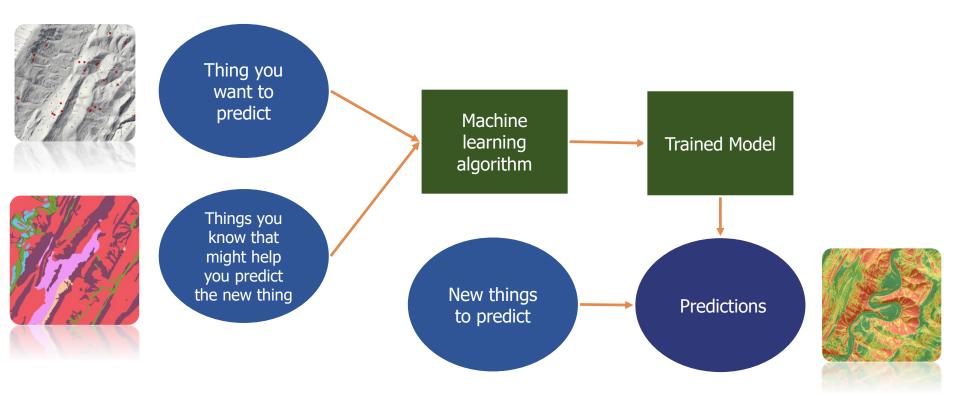

Existing Physiographic Maps Inadequate for WV Landslide Project

MLRA Boundaries Better

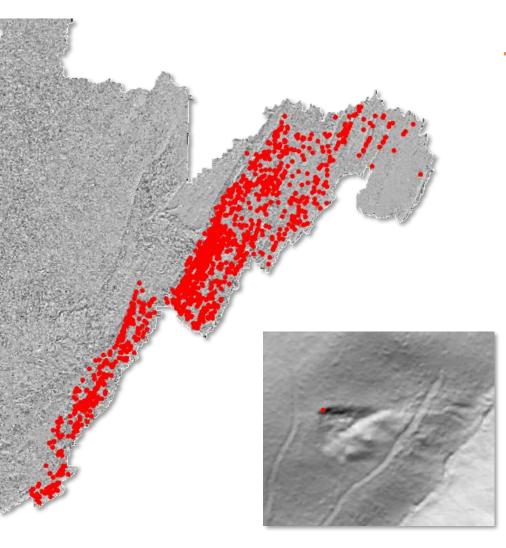
Provinces & Subdivisions Appalachian Plateaus

- Kanawha Section
- Logan Plateau
- Allegheny Mountains Valley & Ridge
- Ridge & Valley
- Great Valley Blue Ridge

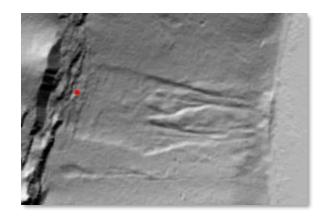

Red = Landslide-Prone



Summary of MLRA Landslide Characteristics


MLRA	No. LiDAR- Mapped Landslides	Types of Landslides	Slope	Geology	Soil	Other Landslide Factors
Central Allegheny Plateau	Total: 30,915* Per sq. mile: 3.6*	Most Common: Slides Slumps Less Common: Rock falls Debris flows Lateral spreads	Majority of landslides on slopes greater than 14°	 Shale and siltstone dominated units most prone to landslides Conemaugh Group most susceptible 	Acid clastic residuum and mining regolith are the most slide-prone materials	 Urban/rural developmer Timber harvesting
Cumberland Plateau and Mountains	Total: 20,714 Per sq. mile: 4.6	Most Common: Slides Slumps Less Common: Rock falls Debris flows Lateral spreads	Majority of landslides on slopes greater than 21°	 Shale and siltstone dominated units most prone to landslides Kanawha Formation most susceptible 	Mining regolith is the most slide- prone material	 Unreclaimed mine sites Timber harvesting
Eastern Allegheny Plateau and Mountains (North)	Total: 2,228* Per sq. mile: 0.66*	Most Common: Slides Slumps Less Common: Rock falls Debris flows	Majority of landslides on slopes greater than 17°	 Shale and siltstone dominated units most prone to landslides Chemung and Mauch Chunk Groups most susceptible 	Mining regolith and calcareous clastic residuum are the most slide-prone materials	 Urban/rural developmer Unreclaimen mine sites Timber harvesting
Eastern Allegheny Plateau and Mountains (South)	Total: 10,297 Per sq. mile: 2.8	Most Common: • Slides • Slumps Less Common: • Rock falls • Debris flows	Majority of landslides on slopes greater than 20°	 Shale and siltstone dominated units most prone to landslides Allegheny and Hinton Formations most susceptible 	Mining regolith is the most slide- prone material	 Unreclaiment mine sites Timber harvesting
Northern Appalachian Ridges and Valleys	Total: 1,997 Per sq. mile: 0.48	Most Common: Slides Slumps Less Common: Rock falls Debris flows Lateral spreads	Majority of landslides on slopes greater than 20°	 Sandstone and shale dominated units most prone to landslides McKenzie Fm. and Clinton Group most susceptible 	Acid clastic residuum is the most slide-prone material	 Limestone quarries Timber harvesting

Goal: Generate predictive models of slope failure probability/occurrence



Machine Learning = Learning from Examples

Training the Model

Based on visual interpretation of terrain data

Modeling Methods: Predictor Variables

- Terrain Derivatives:
 - Topographic Slope
 - Mean Slope
 - Topographic Roughness
 - Slope Position
 - Topographic Dissection
 - Heat Load Index
 - Aspect Linear Transformation
 - Surface Area Ratio
 - Surface Relief Ratio

- Site Exposure Index
- Longitudinal Curvature
- Cross Sectional Curvature
- Profile Curvature
- Plan Curvature

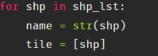
Modeling Methods: Predictor Variables

- Non-Terrain:
 - Roads
 - Distance from US Roads
 - Distance from State Roads
 - Distance from Local Roads
 - Cost Distance from US Roads
 - Cost Distance from State Roads
 - Cost Distance from Local Roads
 - Hydrology
 - Distance from Streams
 - Cost Distance from Streams

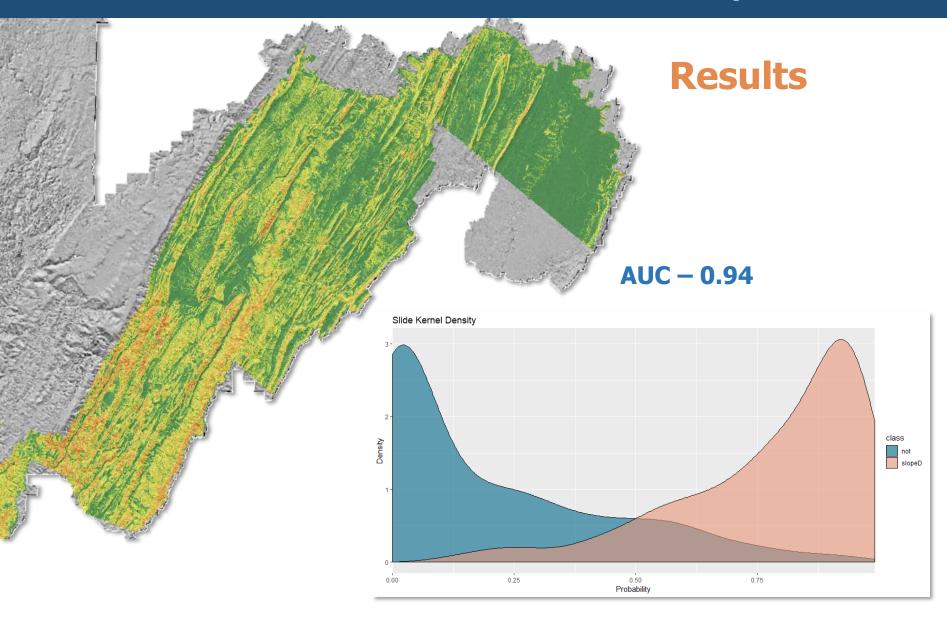
- Geology
 - Geologic Rock Type (Categorical)
 - Modified Geologic Rock Type (Categorical)
- Soils
 - DPSM (Categorical)
 - Drainage Class (Categorical)

Modeling Method

Random Forest

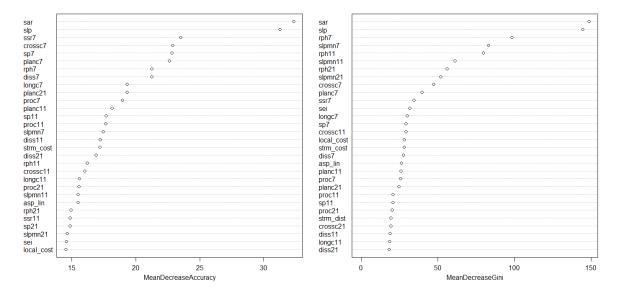

Run RF models

- Provide predictor variables
- Provide presence and absence data

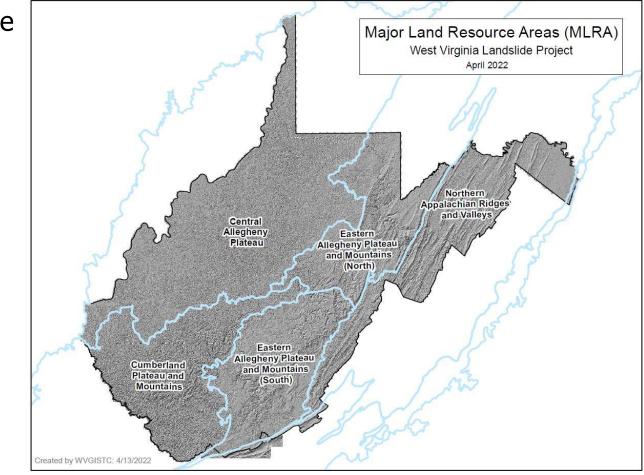

train1_m <- randomForest(y= factor(train1[,1]), train1[,2:ncol(train1)], ntree=501, importance=T, confusion=T, err.rate=T) train2_m <- randomForest(y= factor(train2[,1]), train2[,2:ncol(train2)], ntree=501, importance=T, confusion=T, err.rate=T) train3_m <- randomForest(y= factor(train3[,1]), train3[,2:ncol(train3)], ntree=501, importance=T, confusion=T, err.rate=T) train4_m <- randomForest(y= factor(train4[,1]), train4[,2:ncol(train4)], ntree=501, importance=T, confusion=T, err.rate=T) train5_m <- randomForest(y= factor(train5[,1]), train5[,2:ncol(train5)], ntree=501, importance=T, confusion=T, err.rate=T) model <- combine(train1_m, train2_m, train3_m, train4_m, train5_m)</pre>

Predict to Entire Extent

- Tile-by-tile
- Python scripts
- ~1 week to process



print("Process complete for " + name + "!")



Important Variables

- Surface Area Ratio
- Slope
- Surface Relief Ratio
- Slope Position
- Curvature
- Topographic Roughness
- Topographic Dissection

- Semi-automated with scripting
- Developed models for different physiographic regions
- Predicted entire state

- 1. Risk assessment performed at sub-county scale
- 2. 53% area in high/medium susceptibility
- 3. 11% roads in high/medium risk*
- 4. Structures- majority located in high medium landslide susceptibility area are Residential
 - I. Kanawha and Monongalia counties rank 1st or 2nd
 - II. Harrison and Ohio counties rank 1st and 2nd for Commercial asset values
- 5. Essential Facilities 14 located in high/medium susceptibility area
- 6. Relative risk to humans and related infrastructure is highest in Region 6, which ranks either 1st or 2nd in all five road and structure risk analysis categories

State Summary							
At-Risk State Total							
Total Road Miles in High/Medium risk Areas	/Medium risk High/Medium Risk High/Medium Risk High/Medium Risk Infrastructure in		iles in n risk High/Medium Risk Areas Areas Structure of Essential For Critical For Critical To Structure of Essential For Critical Infrastructure in High/Medium Risk Areas		Total Land Area in High/Medium Risk (Acres)		
4,346	29,618	\$1,979,392,672	14	\$241,432,300	8,261,236		
		State	Total				
Total Road Miles in State	Total Number of Structure/Parcel in State	Total Cost of Strucutre in State	Total Number of Essential Facilities in the State	Total Replacement Cost for Critical Infrastructure*	Total area in the State (Acres)		
39,287	800,758	\$85,823,642,303	1930	\$6,694,090,205	15,499,505		
		Percentag	ge at Risk				
Percent Road Miles in High/Medium risk Areas	Percent Structure/Parcel in High/Medium Risk Areas	Percent Replacement Cost for Structures in High/Medium Risk Areas*	Percent Essential Facilities in High/Medium Risk Areas	Percent Replacement cost for Critical Infrastructure in High/Medium Risk Areas*	Percent of Land Area in High/Medium Risk		
11%	4%	2%	1%	4%	53%		

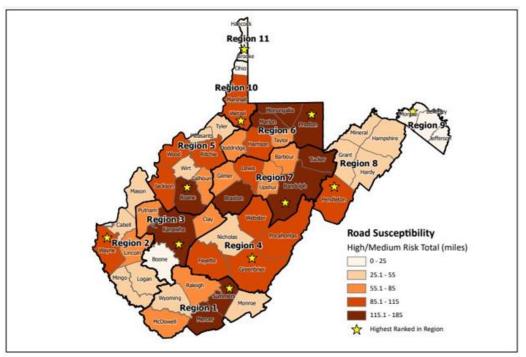
	REGION RANKINGS								
Region	Road Miles in High/Medium Risk Areas	Number of Structures in High/Medium Risk Areas	Total Replacement Costs for Structures in High/Medium Risk Areas	Number of Essential Facilities in High/Medium Risk Areas	Total Replacement Costs for Essential Facilities in High/Medium Risk Areas	Percent of Land Area Classified as High/Medium Risk			
1	4	3	9	3	3	5			
2	6	4	7	2	4	4			
3	7	1	2	3	5	3			
4	5	9	6	-	-	2			
5	3	8	10	3	-	8			
6	2	2	1	1	1	7			
7	1	5	8	-	-	6			
8	8	7	5	-	-	1			
9	10	10	3	3	2	11			
10	9	6	4	3	6	9			
11	11	11	11	-	-	10			

Road risk analysis

- 1. Risk assessment performed using **DOT data**
 - I. For Interstates, US Roads, State, and Other roads (county roads, N/A, state parks, and forests road, FANS, HARP, and Others)
 - II. Municipal non-state roads, railroads, and trail features not included
- 2. Roads were analyzed at two scales
 - An overview level on all roads without any distinction between road types to get the total risk to roads
 - I. Result used to rank Regions based on the total length of susceptible road segments.
 - II. The second set of analyses contains susceptibility details relating to different types of roads

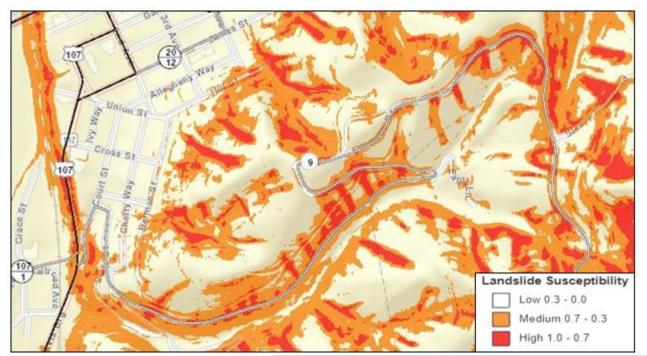
Road length susceptible to High/Medium Landslide Risk

Region	Roads Total (miles)	Roads Total (miles)- High/Medium Risk	Percent of Roads in High/Medium Risk Areas	Rank
1	4975.6	556.4	11.2%	4
2	4471	339.6	7.6%	6
3	3441.8	318.2	9.2%	7
4	4148.6	475.6	11.5%	5
5	5287.5	599.5	11.3%	3
6	5227.2	696.7	13.3%	2
7	5170.2	793.6	15.3%	1
8	2835.4	247.1	8.7%	8
9	1658.2	46.9	2.8%	10
10	1591.9	228.3	14.3%	9
11	479.4	44.2	9.2%	11

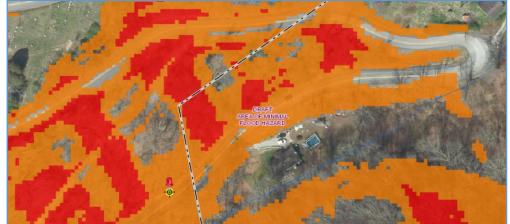

¹Rank based on total road miles at risk

Road length susceptible to High/Medium Landslide Risk

Region	County	Roads Total (miles)	Roads Total (miles)- High/Medium Risk	Percent of Roads in High/Medium Risk Areas in the County	Percent of Total Roads in High/Medium Risk Areas in the Region
1	Summers	633.4	150.1	23.7%	27%
2	Wayne	999.3	103.8	10.4%	31%
3	Kanawha	1725.1	152.5	8.8%	48%
4	Greenbrier	1145.6	109.9	9.6%	23%
5	Roane	903.2	123.5	13.7%	21%
6	Preston	1312.3	172.8	13.2%	25%
7	Randolph	998.9	181.1	18.1%	23%
8	Pendleton	641.4	85.5	13.3%	35%
9	Morgan	431.1	21.3	4.9%	45%
10	Wetzel	644.2	105.1	16.3%	46%
11	Brooke	244.9	22.9	9.4%	52%

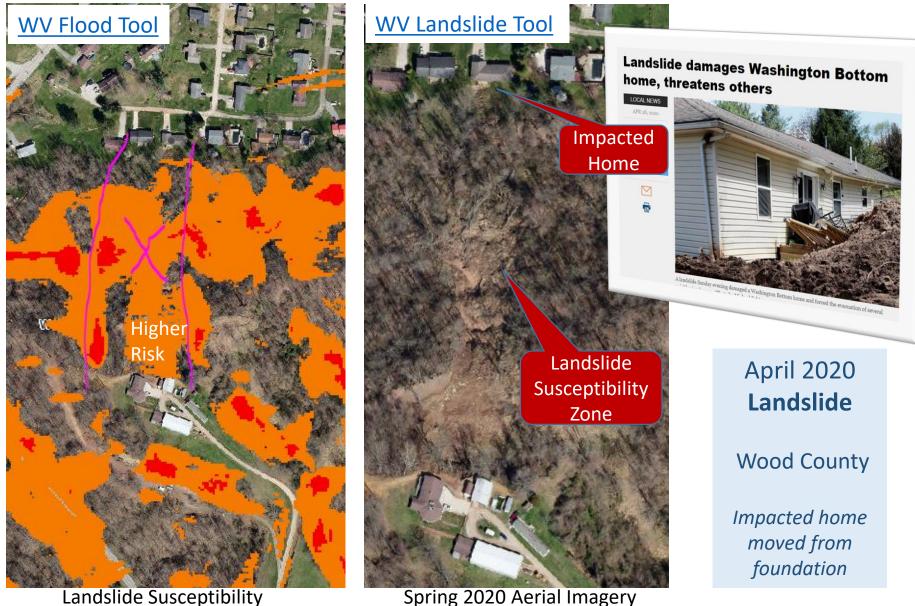

Top 10 counties statewide by road miles in High/Medium Susceptibility Areas

Region	County	Roads Total (miles)	Roads Total (miles)- High/Medium Risk	Percent of Roads in High/Medium Risk Areas
7	Randolph	998.9	181.1	18.1%
6	Preston	1312.3	172.8	13.2%
7	Braxton	896.2	165.7	18.5%
3	Kanawha	1725.1	152.5	8.8%
1	Summers	633.4	150.1	23.7%
1	Mercer	1127.7	138.1	12.2%
6	Marion	854.5	136.7	16.0%
6	Monongalia	1001	132	13.2%
7	Tucker	526.3	131.7	25.0%
5	Roane	903.2	123.5	13.7%



Total road miles in High/Medium Susceptibility Areas

Landslide risk near Hinton, WV in Summers County



<u>WV Flood Tool</u> <u>WV Landslide Tool</u>

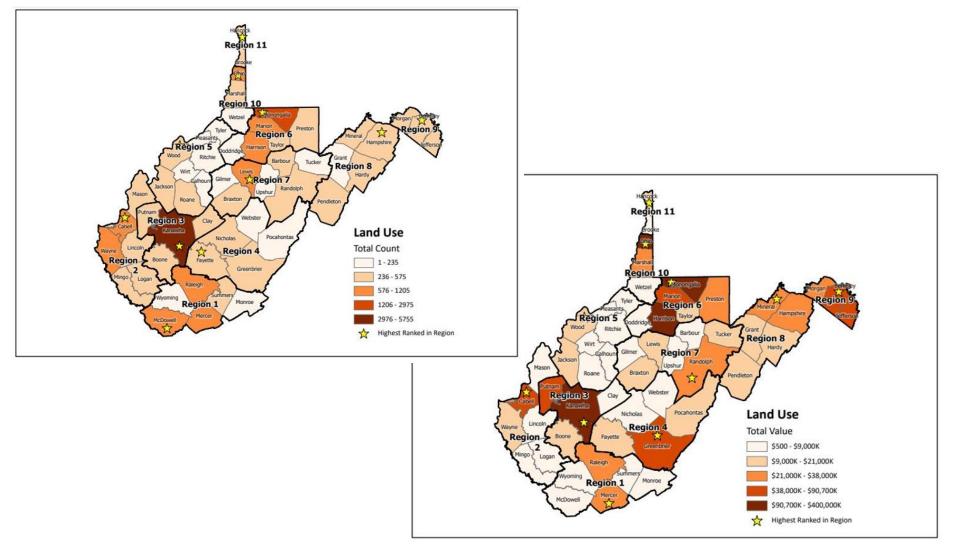
Structure/Parcel Risk Analysis

- 1. Risk assessment performed on parcel level data
 - I. Primary structure point used within 1% annual chance floodplain
 - II. Parcel with site address points used outside floodplain
- 2. Limitations
 - *I.* Parcels containing no addressing points assigned a building value of zero (\$0).
 - *II.* Building values for some structures are less than the values recorded
 - Appraisal values may be in neighboring parcels instead of the parcel where the structure is located.
 This results in building values not being assigned to site address points.
 - *III.* Some government and other property values do not get pulled in from the statewide assessment database, resulting in a lower value of at-risk structures.
 - *IV.* This study is NOT intended for regulatory use and is NOT the final authoritative source of all landslide risk data in the community

Landslide Susceptibility

Structures with High/Medium Risk Landslide Susceptibility

Region	Total Count	Total Value	Ranking (Count)	Ranking (Value)
1	3,489	\$76,729,607	3	9
2	3,130	\$95,832,732	4	7
3	6,956	\$455,472,095	1	2
4	1,301	\$104,555,980	9	6
5	1,476	\$49,211,106	8	10
6	5,805	\$725,657,563	2	1
7	2,327	\$80,007,169	5	8
8	1,597	\$111,771,975	7	5
9	1,195	\$142,031,474	10	3
10	1,650	\$119,190,690	6	4
11	692	\$18,932,281	11	11


Highest ranked county in each Region by structure count & by value

Region	HIGHEST RANK BY COUNT		HIGHEST RANK BY VALUE		
	County	Total Count	County	Total Value	
1	McDowell	1,205	Mercer	\$29,675 <mark>,</mark> 908	
2	Cabell	772	Cabell	\$54,280,453	
3	Kanawha	5,751	Kanawha	\$399 <mark>,</mark> 596,198	
4	Fayette	305	Greenbrier	\$61,943,791	
5	Wood	392	Wood	\$20,735,403	
6	Monongalia	2,967	Monongalia	\$344,409,948	
7	Lewis	757	Randolph	\$25,428,143	
8	Hampshire	402	Mineral	\$34,302,956	
9	Berkeley	516	Berkeley	\$57,360,557	
10	Ohio	887	Ohio	\$90,742,380	
11	Hancock	381	Hancock	\$11,926,699	

Top 10 counties statewide by structure count & by value

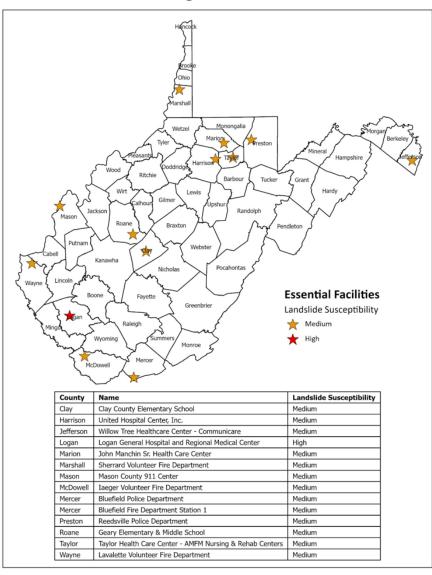
HIGHEST RANK BY COUNT			HIGHEST RANK BY VALUE			
Region	County Total Count		Region	County	Total Value	
3	Kanawha	5,751	3	Kanawha	\$399,596,198	
6	Monongalia	2,967	6	Monongalia	\$344,409,948	
1	McDowell	1,205	6	Harrison	\$256,888,640	
6	Harrison	1,069	10	Ohio	\$90,742,380	
1	Mercer	992	6	Marion	\$71,733,187	
6	Marion	941	4	Greenbrier	\$61,943,791	
10	Ohio	887	9	Berkeley	\$57,360,557	
2	Cabell	772	2	Cabell	\$54,280,453	
7	Lewis	757	9	Jefferson	\$52,730,494	
2	Wayne	728	3	Putnam	\$38,146,493	

Number of structures in High/Medium Susceptibility Areas

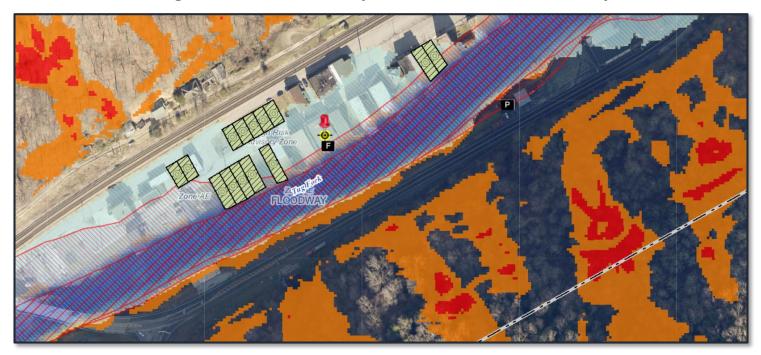
Total Value of structures in High/Medium Susceptibility Areas

Essential Facility Risk Analysis

- 1. Risk assessment performed on parcel level data
 - Facilities included in this analysis include: police departments, fire departments, 911 centers, nursing homes, hospitals, and K-12 schools
- 2. Limitations
 - I. This study is not intended for site-specific analysis or remediation measures and is only suitable for planning-level analysis
 - II. Some government and other property values do not get pulled in from the statewide assessment database, resulting in a lower value of at-risk structures.
 - III. This study is NOT intended for regulatory use and is NOT the final authoritative source of all landslide risk data in the community


Essential facilities with High/Medium Risk Landslide Susceptibility

Region	Total Count	Total Value	Ranking (Count)	Ranking (Value)
1	3	\$1,125,700	2	4
2	3	\$1,371,400	2	3
3	1	\$554,100	3	5
4	0	-	-	-
5	1	-	3	-
6	4	\$236,413,800	1	1
7	0	-	-	-
8	0	-	-	-
9	1	\$1,951,400	3	2
10	1	\$15,900	3	6
11	0	-	-	-


Types of essential facilities in High/Medium Risk Areas

Region	911 Centers	Police Departments	Fire Departments	Hospitals	Nursing Homes	Schools (K-12)
1	0	1	2	0	0	0
2	1	0	1	1	0	0
3	0	0	0	0	0	1
4	0	0	0	0	0	0
5	0	0	0	0	0	1
6	0	1	0	1	2	0
7	0	0	0	0	0	0
8	0	0	0	0	0	0
9	0	0	0	0	1	0
10	0	0	1	0	0	0
11	0	0	0	0	0	0

Essential facilities located in High/Medium Landslide Susceptibility Areas

laeger Volunteer Fire Department. McDowell County

WV Flood Tool

WV Landslide Tool

AMFM Nursing & Rehab Centers, Taylor County

WV Flood Tool

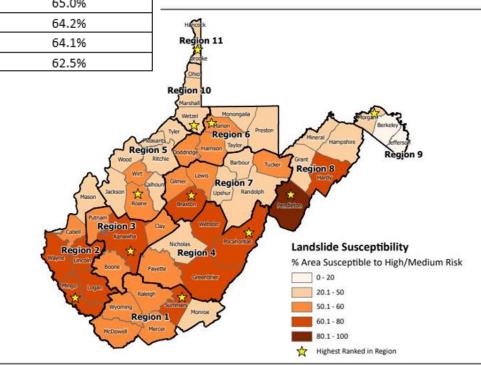
WV Landslide Tool

Total Area Risk Analysis

- Total area risk analysis assesses the total area of land classified as high/medium risk of landslide susceptibility in West Virginia
- 2. Limitations
 - I. This study is not intended for site-specific analysis or remediation measures and is only suitable for planning-level analysis
 - *II.* This study is NOT intended for regulatory use and is NOT the final authoritative source of all landslide risk data in the community

Total area of land classified as High/Medium Landslide Susceptibility

Region	Area Total (acres)	Area Total (acres)- High/Medium Risk	Percent of Area Classified as High/Medium Risk	Rank ¹
1	1,859,569	1,042,500	56.1%	5
2	1,640,167	969,248	59.1%	4
3	1,348,345	799,345	59.3%	3
4	2,459,430	1,468,436	59.7%	2
5	1,724,768	786,722	45.6%	8
6	1,433,742	672,012	46.9%	7
7	2,177,502	1,120,046	51.4%	6
8	1,751,413	1,076,990	61.5%	1
9	488,638	99,211	20.3%	11
10	500,188	187,382	37.5%	9
11	115,743	33,661	29.1%	10

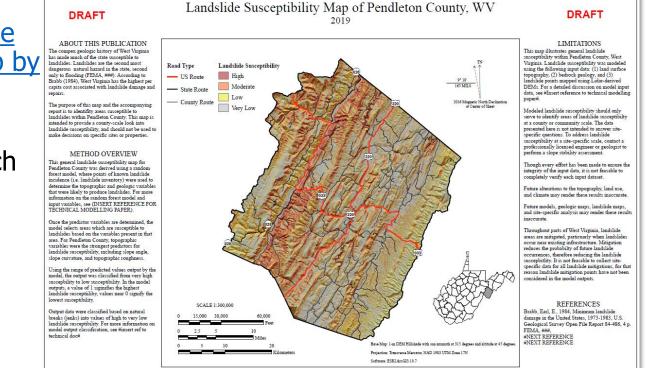

¹Rank based on percent of area classified as high/medium risk

Highest ranked county in each Region by percent of area classified as High/Medium Susceptibility

Region	County	Total Area (acres)	Total Area (acres)- High/Medium Risk	Percent of County Area Classified as High/Medium Risk	Percent of High/Medium Risk Area in Region
1	Summers	235,138	169,495	72.1%	16%
2	Mingo	271,217	188,202	69.4%	19%
3	Kanawha	582,509	373,549	64.1%	47%
4	Pocahontas	602,346	417,884	69.4%	28%
5	Roane	309,396	173,100	55.9%	22%
6	Marion	199,219	109,559	55.0%	16%
7	Braxton	330,400	224,049	67.8%	20%
8	Pendleton	446,660	401,531	89.9%	37%
9	Morgan	147,140	57,403	39.0%	58%
10	Wetzel	231,050	114,114	49.4%	61%
11	Brooke	59,353	18,047	30.4%	54%

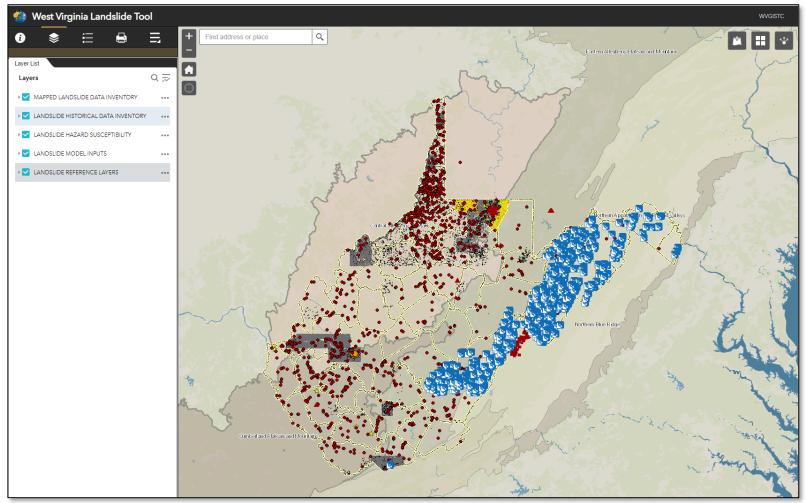
Top 10 counties statewide by percent of area in High/Medium Susceptibility Areas

Region	County	Total Area (acres)	Total Area (acres) - High/Medium Risk	Percent of County Area Classified as High/Medium Risk	
8	Pendleton	446,660	401,531	89.9%	
1	Summers	235,138	169,495	72.1%	
2	Mingo	271,217	188,202	69.4%	
4	Pocahontas	602,346	417,884	69.4%	
7	Braxton	330,400	224,049	67.8%	
2	Logan	291,411	194,254	66.7%	
4	Webster	355,723	231,396	65.0%	
8	Hardy	374,055	239,996	64.2%	
3	Kanawha	582,509	373,549	64.1%	
2	Lincoln	280,780	175,372	62.5%	



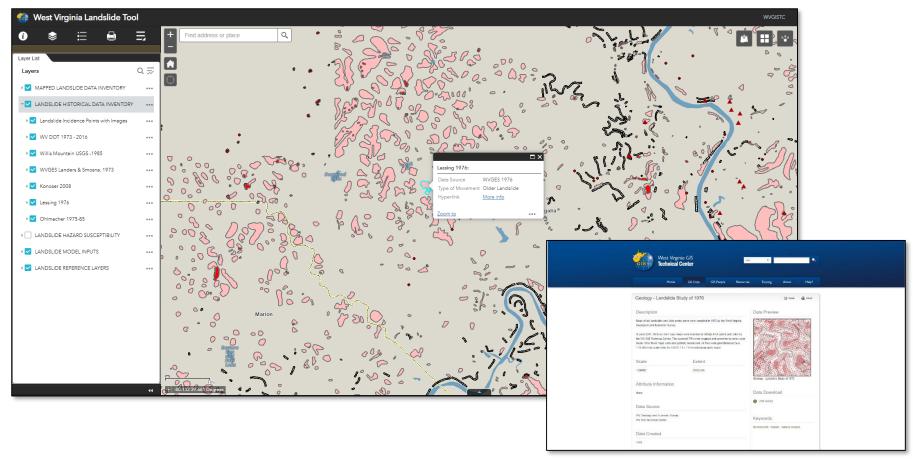
Percent of total land area in High/Medium Susceptibility Areas

Landslide Susceptibility Prediction


Susceptibility and Hazard Assessment

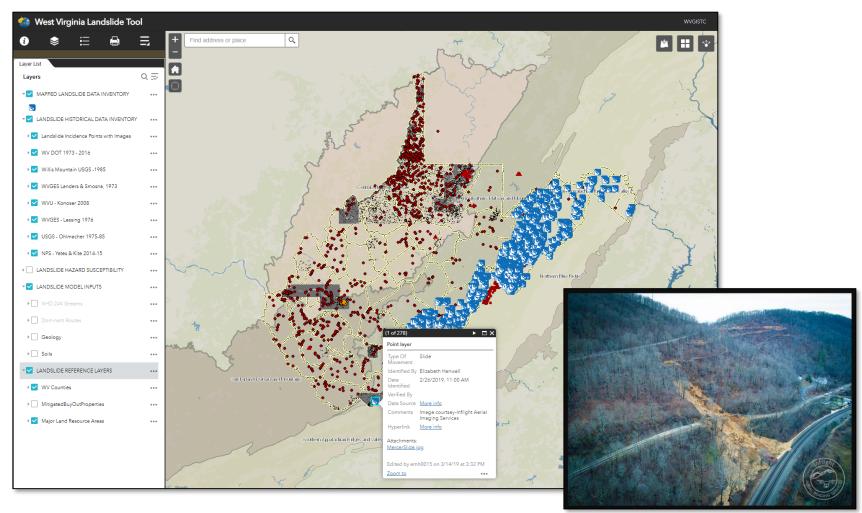
- Produced <u>landslide</u> <u>susceptibility map by</u> <u>county</u>
- Calculate at risk properties for each county/region

Landslide Incident Inventory


www.mapWV.gov/Landslide

Over 100,000 landslide incident point and polygon features have been inventoried into a digital geodatabase

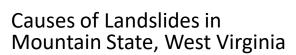
Landslide Incident Inventory

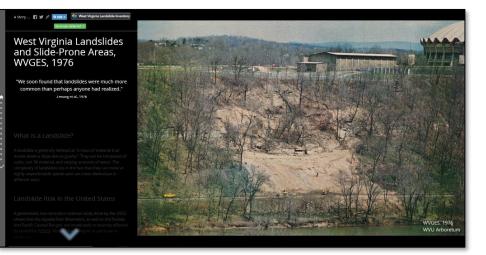

www.mapWV.gov/Landslide

Over 100,000 landslide incident point and polygon features have been inventories into a digital geodatabase

Landslide Incident Inventory

www.mapWV.gov/Landslide




Landslide Outreach Material

StoryMaps

West Virginia Landslides and Slide-Prone Areas, WVGES 1976

https://arcg.is/1KDnvq

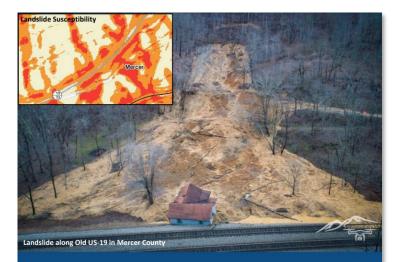
https://arcg.is/1SW0Sn

Landslide Outreach Material

Brochures

About identifying signs of slope instability and mitigation measures that may help reduce landslide risk at the <u>community</u> level

About identifying signs of slope instability and mitigation measures that may help reduce landslide risk at the <u>individual</u> property level



Landslide Outreach Material

Regional Reports

Statewide Report

West Virginia Landslide Risk Assessment

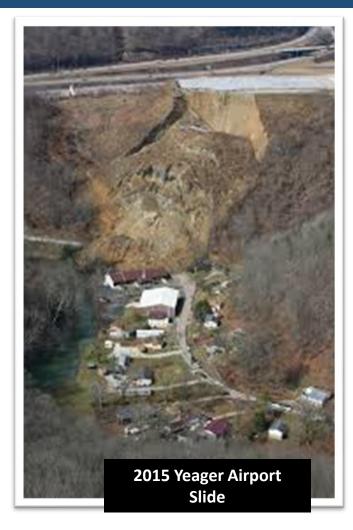
Region 1 – Raleigh, Summers, Monroe, Mercer, McDowell, & Wyoming counties

In support of FEMA HMGP Project

West Virginia Landslide Risk Assessment

APRIL 14, 2022

In support of FEMA HMGP Project



Landslide Risk Assessment

Goals

- Develop a landslide inventory
- Create valid landslide models for specific WV regions
- Generate county-level resolution landslide maps
- Create an interactive web map application for displaying landslide models and variables
- Use the new landslide models and information to update the State Hazard Mitigation Plan

QUESTIONS?

