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Abstract: Machine learning (ML) methods, such as artificial neural networks (ANN), k-nearest 
neighbors (kNN), random forests (RF), support vector machines (SVM), and boosted decision trees 
(DTs), may offer stronger predictive performance than more traditional, parametric methods, such 
as linear regression, multiple linear regression, and logistic regression (LR), for specific mapping 
and modeling tasks. However, this increased performance is often accompanied by increased model 
complexity and decreased interpretability, resulting in critiques of their “black box” nature, which 
highlights the need for algorithms that can offer both strong predictive performance and interpret-
ability. This is especially true when the global model and predictions for specific data points need 
to be explainable in order for the model to be of use. Explainable boosting machines (EBM), an aug-
mentation and refinement of generalize additive models (GAMs), has been proposed as an empirical 
modeling method that offers both interpretable results and strong predictive performance. The 
trained model can be graphically summarized as a set of functions relating each predictor variable 
to the dependent variable along with heat maps representing interactions between selected pairs of 
predictor variables. In this study, we assess EBMs for predicting the likelihood or probability of 
slope failure occurrence based on digital terrain characteristics in four separate Major Land Re-
source Areas (MLRAs) in the state of West Virginia, USA and compare the results to those obtained 
with LR, kNN, RF, and SVM. EBM provided predictive accuracies comparable to RF and SVM and 
better than LR and kNN. The generated functions and visualizations for each predictor variable and 
included interactions between pairs of predictor variables, estimation of variable importance based 
on average mean absolute scores, and provided scores for each predictor variable for new predic-
tions add interpretability, but additional work is needed to quantify how these outputs may be 
impacted by variable correlation, inclusion of interaction terms, and large feature spaces. Further 
exploration of EBM is merited for geohazard mapping and modeling in particular and spatial pre-
dictive mapping and modeling in general, especially when the value or use of the resulting predic-
tions would be greatly enhanced by improved interpretability globally and availability of prediction 
explanations at each cell or aggregating unit within the mapped or modeled extent. 

Keywords: interpretable machine learning; machine learning; explainable boosting machines; EBM; 
slope failures; landslides; light detection and ranging; LiDAR; digital terrain analysis;  
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1. Introduction 
For empirical modeling tasks, in which predictor variables and example data are 

used to build models and make predictions of class membership, class probabilities, or 
continuous measures, machine learning (ML) algorithms and methods (e.g., k-nearest 
neighbor (kNN), artificial neural networks (ANN), support vector machines (SVM), ran-

Citation: Maxwell, A.E.; Sharma, M.; 

Donaldson, K.A. Explainable  

Boosting Machines for Slope Failure 

Spatial Predictive Modeling. Remote 

Sens. 2021, 13, 4991. https:// 

doi.org/10.3390/rs13244991 

Academic Editor: Alexander  

Brenning  

Received: 23 October 2021 

Accepted: 7 December 2021  

Published: 8 December 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Remote Sens. 2021, 13, 4991 2 of 27 
 

 

dom forests (RF), and boosted decision trees (DTs)) may provide improved model perfor-
mance in comparison to traditional, parametric methods, such as linear regression, multi-
ple linear regression, logistic regression (LR), and Gaussian maximum likelihood [1–3]. 
This is generally attributed to the ability of ML algorithms to characterize patterns in 
noisy, large, and/or complex datasets and feature spaces without having to make distri-
bution assumptions that are often violated [2]. Unfortunately, this increased predictive 
power is generally accompanied by increased model complexity and reduced interpreta-
bility, leading practitioners and researchers to critique the “black box” nature of these 
methods and call for the use of more interpretable or “glass box” models. This is especially 
true when there is an interest in or need to explain what factors contribute most to the 
prediction and how the response variable is impacted by specific predictor variables. It is 
also of value for assessing how specific cases, such as each raster cell or aggregating unit 
across the mapped or modeled landscape, was predicted and what conditions or site char-
acteristics resulted in the prediction [4,5]. 

In response to these concerns, recent advancements have yielded new methods or 
adaptions of existing methods that offer more transparent and interpretable results and 
predictive performance that may be comparable to those obtainable with black box ML 
methods, such as SVM, RF, and boosted DTs. In this study, we explore the use of explain-
able boosting machine (EBM) [6,7] for predicting the probability of slope failure (i.e., land-
slide) occurrence based on topographic predictor variables calculated from a light detec-
tion and ranging (LiDAR)-derived digital terrain model (DTM). We compare predictive 
performance of EBM to LR and common black box machine learning methods (kNN, RF, 
and SVM), assess how the algorithm responds when the number of training samples is 
reduced, compare how models trained in one MLRA generalize to the other study areas, 
and explore the outputs of the model associated with global interpretability (e.g., gener-
ated functions for each predictor variable, heat maps associated with included interactions 
between pairs of predictor variables, and variable importance estimates based on mean 
absolute score) and local interpretability (e.g., scores for each predictor variable contrib-
uting to the final prediction of a new sample or location). In this study, we define slope 
failures as the movement of a mass of rock, earth, or debris down a slope. 

This study is part of a larger project that explores the use of empirical spatial predic-
tive modeling methods and LiDAR-derived terrain variables for creating spatial probabil-
istic predictive models of slope failure occurrence. In the first component of the study, 
Maxwell et al. [8], we used the RF algorithm and explored the importance of predictor 
variables, the value of including additional, non-terrain variables, and the impact of re-
ducing the number of predictor variables and training samples. In the second study in the 
series, Maxwell et al. [9], we explored how well RF models developed using training sam-
ples from different physiographies generalized to other landscapes. This study expands 
upon our prior studies in the series by evaluating the use of the EBM algorithm as a po-
tentially more interpretable method for obtaining accurate slope failure occurrence pre-
dictions over large spatial extents. 

2. Background 
2.1. Explainable Machine Learning 

EBM builds upon or augments generalized additive models (GAMs) (Equation (1)). 

ŷ = β0 + f1(x1) + f2(x2) + f3(x3) + ……. + fi(xi) (1) 

In contrast to linear and multiple linear regression, GAMs do not assume a linear 
relationship between predictor variables and the response variable. Instead, relationships 
are modeled using smoothing, spline, or other methods. A response variable is predicted 
by learning an intercept (β0) along with functions that describe the relationship between 
the response and each predictor variable. Essentially, the coefficients (βi) in a multiple 
linear regression model are replaced with learned functions (fi) that are not confined to a 
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linear relationship. The model is additive because separate functions are learned for each 
predictor variable independently, which allows for an examination of the effect of each 
predictor variable separately [2]. In order to apply GAMs to binary classification prob-
lems, as is the case in this study, class logits are predicted as opposed to a continuous 
variable (Equation (2)). In this equation, p represents the probability of the sample belong-
ing to the positive class, which is assigned a value of 1 while the negative class is assigned 
a value of 0 [2,10]. 

log( 𝑝𝑝(𝑥𝑥)
1−𝑝𝑝(𝑥𝑥)

) = β0 + f1(x1) + f2(x2) + f3(x3) + ……. + fi(xi) (2) 

Although GAM equations are more interpretable than models generated using black 
box ML methods, which cannot be presented as a single equation and set of functions that 
describe the estimated relationship between the dependent variable and values of each 
predictor variable, they are often less accurate [7]. EBM expands upon GAMs to maintain 
interpretability but improve predictive performance. EBM is a fast implementation of the 
generalized additive models plus interactions (GA2M) method [6,7,11]. Using GA2M, the 
function associated with each predictor variable is approximated using many shallow de-
cision trees created with gradient boosting to iteratively improve model performance. 
More specifically, shallow decision tree generation, learning, and gradient updates are 
performed using a single predictor variable at a time in a round-robin fashion with a low 
learning rate [6,7]. Currently, the InterpretML implementation of EBM, which was used 
in this study, implements log loss for classification and mean square error loss (MSE) for 
regression as measures of error or loss [6]. Due to the low learning rate, only small updates 
to the model are made with the addition of each tree. This requires the model to be built 
by iterating through the training data over thousands of boosting iterations in which each 
tree only use one predictor variable. The algorithm developers argue that the low learning 
rate reduces the influence of the order in which features are used while iteratively cycling 
through the predictor variables using a round-robin method minimizes the impact of co-
linearity to maintain interpretability [6,7,11]. To take into account interactions between 
predictor variables, two-dimensional functions (fij(xi, xj)) can be learned to relate the re-
sponse variable to pairs of predictor variables. The subset of available interactions in-
cluded are selected using the FAST method proposed by Lou et al. [7] that ranks all pairs 
of predictor variables. Adding interaction terms requires that the additive nature of GAMs 
be relaxed [2], and interpreting the influence of a single predictor variable will require 
investigating the associated one-dimensional function and any two-dimensional interac-
tion functions that include the variable of interest [6,7]. 

Once an ensemble of decision trees is trained using gradient boosting, all trees pro-
duced for a single predictor variable are used to predict the training samples and build 
the function associated with each feature. Once the trees are used to build the function for 
each predictor variable, they are no longer needed, simplifying inference to new data. 
Thus, the function associated with each predictor variable or interaction is derived from 
the large set of shallow trees as opposed to using a spline method, as is common for tra-
ditional GAMs. For binary classification and associated class probabilities, the final pre-
diction is derived by adding all scores (i.e., the effect of each included factor on the pre-
dicted logits for the positive class) estimated using each predictor variable and included 
interactions with the use of a link function to adapt to specific tasks (i.e., regression vs. 
classification). Due to its reliance on gradient descent and a low learning rate, training can 
be slower than some other ML methods, such as RF or SVM; however, prediction to new 
data is generally fast due to a reliance on the learned functions as opposed to the larger 
number of trees from which they were derived [6,7,11]. 

Figure 1 conceptualizes the ancillary outputs of EBM that aid in interpretability. For 
the global model, results include (1) graphic output of the functions for each predictor 
variable and each included two-dimensional interaction and (2) an assessment of variable 
importance for each predictor variable and interaction term. For binary classification 
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problems specifically, the predicted relationship between the predictor variable and the 
dependent variable is obtained by graphing the values of the predictor variable to the x-
axis and the associated prediction or score to the y-axis. For included two-dimensional 
interactions, each variable will be mapped to an axis and the resulting prediction or score 
will be presented as a heat map within the two-dimensional space. As a result, compo-
nents of the model can be represented graphically, which the algorithm originators cite as 
the key characteristic of an interpretable model [6,7,11]. Larger scores indicate that the 
model associates those ranges of predictor variable values with a higher likelihood of oc-
currence of the positive class whereas lower values are associated with a lower likelihood 
or probability of occurrence [6,7,11]. In the current InterpretML implementation of EBM, 
variable importance is estimated as the average absolute value of the predicted score pro-
vided by the predictor variable when predicting each feature in the training set. Features 
that have larger magnitudes of feature function scores will generally show greater im-
portance [6]. 

 
Figure 1. Conceptualization of outputs from EBM that provide model explanations. (a) One-dimen-
sional feature function for a single predictor variable; (b) two-dimensional function for interaction 
between two predictor variables; (c) global estimate of variable importance as mean absolute score; 
(d) contribution scores for variables for predicting a new sample. Arrows indicate direction of in-
creasing values. Scores relate to the effect of each included predictor variable or interaction on the 
predicted logits for the positive class. 

Once a new sample is predicted, such as a new pixel or aggregating unit, the score 
associated with each predictor variable can be obtained to aid in interpreting what char-
acteristics resulted in the prediction [6,7,11]. Features that have larger magnitude positive 
or negative scores have a larger influence in the resulting prediction than features that 
had scores nearer to zero. 

Methods are available to explain and increase the interpretability of black box meth-
ods, such as RF and SVM. For example, the local interpretable model-agnostic explana-
tions (LIME) method allows for a linear approximation of any model for the prediction of 
a single sample point or observation with each predictor interpreted additively [12]. 
Shapely Additive Explanations (SHAP) allow for the assessment of variable importance, 
even if multicollinearity is present, using cooperative game theory [13,14]. Partial depend-
ency plots allow for the interpretation of the effect of a predictor variable for the prediction 
of the dependent variable [15]. Variable importance estimates can also be generated as an 
ancillary output from some models; for example, variable importance assessment can be 
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performed with the RF algorithm using a variety of methods with varying validity for 
different use cases [16–21]. In contrast to these methods, EBM attempts to provide a fully 
interpretable learning framework (i.e., all model components can be graphed as functions 
or two-dimensional heat maps), as opposed to adding interpretability to a black box clas-
sifier. 

Interpretable and explainable ML has already been investigated within disciplines in 
which inference, variable importance, and understanding prediction results for single, 
new observations are of particular importance. Specifically, such methods have been in-
vestigated in the fields of healthcare (e.g., [13,22–25]), finance (e.g., [26–28]), and law (e.g., 
[26,29,30]). Explainable ML has seen less application and investigation in geospatial sci-
ence and geoscience [31–33]. For geohazard mapping and modeling specifically, we argue 
that there is value in interpretable results. For example, slope failure occurrence or risk 
probabilistic predictions that are interpretable could improve the use of trained empirical 
models by allowing users to understand what landscape characteristics at a specific site 
(e.g., steepness, incision, or rugosity) resulted in a predicted high likelihood of occurrence 
or risk. Thus, there is a need to explore explainable ML methods for these tasks. In fact, 
prior studies have promoted the use of GAM-based methods, such as those relying on 
spline, for slope failure and landslide research due to their interpretable nature (see, for 
example, [34–36]). 

2.2. Slope Failure Mapping and Modeling 
Empirical, ML methods have shown great promise for geohazard mapping and mod-

eling tasks. Algorithms that have shown particular value for probabilistic prediction of 
risk or occurrence include RF (e.g., [8,9,35,37–39]), SVM (e.g., [40–43]), and boosted DTs 
(e.g., [35,37,39]). LR techniques were commonly used prior to the development and re-
finement of modern ML methods (e.g., [44–46]) and have more recently served as a bench-
mark by which to compare more complex or newly developed methods (e.g., [47,48]). 
More recently, convolutional neural network (CNN)-based deep learning methods have 
been explored for slope failure mapping and prediction (e.g., [49–51]). 

A variety of predictor variables have been investigated for geohazard and slope fail-
ure occurrence or risk prediction including variables associated with lithology, soil char-
acteristics, distance to roads and streams, and topographic characteristics 
[8,9,35,37,39,48,52–55]. Digital terrain variables derived from DTMs (e.g., measures of 
steepness, rugosity, orientation, and surface curvature) have been shown to be of partic-
ular importance [8,35,37,41,56]. Maxwell et al. [8] reported only slight improvements in 
predictive performance when incorporating variables associated with lithologic and soil 
characteristics and distance from roads and streams with digital terrain variables. Further, 
Goetz et al. [36] noted that empirical models incorporating digital terrain variables often 
outperform physical process models of slope failure risk. 

Many studies have provided comparisons of ML and other modeling methods for 
predicting slope failure occurrence or risk (e.g., [39,40,47,57,58]) while some studies have 
investigated the impact of feature space, or predictor variables used (e.g., [8,35,59]). In 
these studies, the primary consideration is model accuracy or performance as measured 
using withheld validation samples and assessment metrics such as overall accuracy (OA); 
Kappa; class-level precision, recall, and F1 score; and area under the receiver operating 
characteristic curve (AUC ROC) or precision-recall curve (AUC PR). However, other con-
siderations have been explored. For example, Chang et al. [60] and Brock et al. [61] ex-
plored the impact of DEM data source and resolution on slope failure predictive perfor-
mance while Maxwell et al. [9] assessed how well models trained in certain physi-
ographies generalize to new landscapes with varying terrain and geomorphic character-
istics. Catani et al. [54] explored the sensitivity of the RF algorithm for landslide suscepti-
bility modeling in regard to tuning and hyperparameter settings. To the best of our 
knowledge, no studies have explored model interpretability as the primary research ob-
jective. 
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3. Methods 
3.1. Study Areas and Slope Failure Data 

Four separate study areas are investigated, all within the state of West Virginia in the 
United States. These study areas are defined by Major Land Resource Areas [62] (MLRAs) 
that intersect West Virginia including the Central Allegheny Plateau (CAP), Cumberland 
Plateau and Mountains (CPM), Eastern Allegheny Plateau and Mountains (EAPM), and 
Northern Appalachian Ridges and Valleys (NARV) (Figure 2). Due to varying topogra-
phy, anthropogenic alterations, disturbance histories, and slope failure presentation, the 
four MLRAs were treated as separate study areas as opposed to combining the data to 
generate a single dataset and model. 

 
Figure 2. (a) Major Land Resource Areas (MLRAs) investigated in this study; (b) shows the extent 
of (a) in the contiguous United States. MLRA data are provided by the United States Department of 
Agriculture (USDA) [62]. (c) through (f) provide examples of terrain conditions, represented using 
LiDAR-derived hillshades, in the four MLRAs studied. Red rectangles in (a) represent the areas 
depicted in (c–f). CAP = Central Allegheny Plateau, CPM = Cumberland Plateau and Mountains, 
EAPM = Eastern Allegheny Plateau and Mountains, and NARV = Northern Appalachian Ridges 
and Valleys. 

Figure 2 shows the extent of each MLRA in the state and also provides examples of 
characteristic surface morphologies using LiDAR-derived hillshades. Generally, the state 
of West Virginia has a high degree of susceptibility to slope failures due to local relief and 
steep slopes, a humid climate, weak geologic units, recent stream incision, and anthropo-
genic landscape modifications [63]. The state experiences average winter temperatures of 
approximately 0 °C and average summer temperatures of approximately 22 °C, with the 
lowest seasonal temperatures occurring in the EAPM MLRA. Precipitation is variable re-
sulting from topographic and rain shadow effects. Western-facing slopes in the EAPM 
generally experience the most precipitation with totals as high as 1600 mm per year while 
the NARV experiences the lowest, with totals of approximately 635 mm per year. Topog-
raphy between the MLRAs also varies. For example, the CAP is characterized by a high 
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degree of local relief due to dissection of the plateau by a dendritic stream network while 
the NARV is characterized by long, linear ridges and valleys resulting from erosion, un-
derlying geologic structure (i.e., synclines and anticlines), and a trellis stream network 
[64,65]. The steepest slopes generally occur in the CPM, a landscape that has been exten-
sively modified by historic surface coal mining and more recent mountaintop removal 
coal mining [66–68]. In regard to land cover and land use, the state is dominated by forests 
with development, urbanization, and agriculture concentrated in river valleys [64]. 

Table 1 provides the land areas and number of mapped slope failures in each MLRA. 
Each slope failure was mapped as a point feature at the interpreted initiation location or 
head scarp as opposed to an areal extent due to the large spatial extent to inventory and 
number of features to be mapped along with the difficulty of accurately and consistently 
digitizing the full spatial extent of material displacement. Although the lack of slope fail-
ure polygons was a limitation in this study, generating an accurate and large dataset of 
slope failure areal extents across the state was not feasible, and prior studies have success-
fully used point-based representations of slope failures to train empirical models (e.g., 
[35–37,46]). To date, a total of 64,864 slope failure points has been identified by trained 
analysts supervised by a professional geomorphologist. The analysts used a combination 
of post-failure LiDAR-derived hillshades and slopeshades along with ancillary geospatial 
data to interpret initiation locations. It should be noted that a full inventory for the entire 
state extent is still pending since a full LiDAR dataset is not yet available. Specifically, full 
coverages for the CAP, CPM, and EAPM have yet to be made available; however, it is 
anticipated that these data will be available and post-processed by early 2022. Only areas 
with LiDAR data available were used. In this study, we do not differentiate types of slides. 
However, analysts labeled all digitized slope failures as either slides, debris flows, lateral 
spread, or multiple failures, with the majority categorized as slides. Slope failure inci-
dence points are viewable at the WV Landslide Tool web application 
(https://www.mapwv.gov/landslide, accessed on 7 December 2021). 

Table 1. MLRA land areas, abbreviations used in this study, and number of mapped slope failure 
incidence points. Note that a statewide dataset of incidence points is not yet available since LiDAR 
data collection is not yet complete. 

MLRA Abbreviation Land Area in WV 
Number of Slope Failures 

Mapped 
Central Allegheny Plateau CAP 22,281 km2 29,637 

Cumberland Plateau and Moun-
tains CPM 11,644 km2 20,712 

Eastern Allegheny Plateau and 
Mountains EAPM 18,071 km2 12,518 

Northern Appalachian Ridges and 
Valleys 

NARV 10,320 km2 1997 

3.2. Training Data and Predictor Variables 
All algorithms investigated require both presence and absence data. As a result, 

pseudo absence data were generated as random points within each MLRA. From the set 
of random points, samples were removed if they (1) did not occur within areas where 
LiDAR data were available, (2) were within 30 m of a mapped landslide, and/or (3) oc-
curred within the extent of or within 30 m of historic slope failure data provided by the 
West Virginia Department of Transportation (WVDOT) and the West Virginia Geological 
and Economic Survey (WVGES). Although historic data were used to refine the pseudo 
absence data, these data were not used to train or validate the resulting models. Instead, 
we only relied on the point features that were manually interpreted for consistency. This 
was the same pseudo absence sampling method used in our prior studies in the series 
[8,9]. 

https://www.mapwv.gov/landslide
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In order to perform consistent experimentation across the four different MLRAs and 
the different algorithms, we randomly selected 1200 slope failure and 1200 pseudo ab-
sence samples, or 2400 samples in total, from the complete dataset available for each 
MLRA. For model validation, 500 slope failure and pseudo absence samples, or a total of 
1000 samples, were randomly selected such that the training and validation sets were non-
overlapping. Further, in order to reduce spatial autocorrelation between the training and 
validation samples, which may optimistically bias the assessment, each MLRA was tes-
sellated into 10,000-hectare contiguous hexagons (Figure 3). Random training and valida-
tion partitioning were conducted to ensure that slope failure and pseudo absence samples 
within the same hexagon bin occurred in the same split and also could not be included in 
both the training and validation partitions. In summary, in order to foster a fair compari-
son between different MLRAs, we used the same number of training samples. For a fair 
comparison between algorithms, each algorithm within each MLRA was trained and val-
idated using the same sample partitions. 

 
Figure 3. Hexagon tessellation used to define training and validation regions within each MLRA 
with associated slope failure and pseudo absence samples. 

In order to assess how the algorithms respond to a reduction in the number of train-
ing features, we also randomly extracted samples from the full 2400 training point da-
tasets in each MLRA. We generated training sets with 10, 50, 100, 200, 300, 400, 500, 600, 
700, 800, 900, 1000, and 1100 samples per class. The same samples selected in each set were 
used to train all the algorithms to ensure a fair comparison between methods. 

Additionally, for consistency and because our prior study [8] documented only mar-
ginal improvements when non-terrain predictor variables were included in the feature 
space, in this study, we only used terrain variables that could be consistently generated 
from the post-failure LiDAR-derived DTM for all MLRAs. The calculated variables are 
summarized in Table 2. These variables were selected to capture a wide range of local 
topographic characteristics relating to steepness, curvature, orientation, slope position, 
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rugosity, incision, and incoming solar radiation. All variables were calculated from the 2 
m spatial resolution, LiDAR-derived DTM. Any variable that required defining a local 
moving window was calculated using multiple window sizes (i.e., circular windows with 
radii of 7, 11, and 21 cells) in order to capture terrain characteristics at varying spatial 
scales. Scales were selected based on common ridge-to-valley distances across the study 
area extents. 

Table 2. Description of terrain variables used in this study. Abbreviations defined in this table are 
used throughout this paper. 

Variable Abbreviation Description 
Window Radius 

(Cells) 

Slope Gradient Slp Gradient or rate of maximum 
change in Z as degrees of rise 

1 

Mean Slope Gradient SlpMn 
Slope averaged over a local win-

dow 7, 11, 21 

Linear Aspect LnAsp Transform of topographic aspect to 
linear variable 

1 

Profile Curvature PrC 
Curvature parallel to direction of 

maximum slope 
7, 11, 21 

Plan Curvature PlC Curvature perpendicular to direc-
tion of maximum slope 

7, 11, 21 

Longitudinal Curvature LnC 

Profile curvature intersecting with 
the plane defined by the surface 

normal and maximum gradient di-
rection 

7, 11, 21 

Cross-Sectional Curvature CSC 

Tangential curvature intersecting 
with the plane defined by the sur-
face normal and a tangent to the 
contour—perpendicular to maxi-

mum gradient direction 

7, 11, 21 

Slope Position TPI Z–Mean Z 7, 11, 21 

Topographic Roughness TRI Square root of standard deviation 
of slope in local window 

7, 11, 21 

Topographic Dissection Index TDI 
Z −𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 −𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 7, 11, 21 

Surface Area Ratio SAR 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

cosine(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗  𝜋𝜋 ∗ 180) 1 

Surface Relief Ratio SRR 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Z−𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍
𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 −𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍  7, 11, 21 

Site Exposure Index SEI Measure of exposure based on 
slope and aspect 

1 

Heat Load Index HLI 
Measure of solar insolation based 

on slope, aspect, and latitude 1 

Based on a principal component analysis, 95% of the total variance in all 32 included 
predictor variables was explained with 12 or 13 principal components. The mean absolute 
Spearman’s rank correlation coefficient for variable pairs were 0.31, 0.28, 0.33, and 0.31 for 
the CAP, CPM, EAPM, and NARV MLRAs, respectively. Of all possible predictor variable 
pairs (496), the number that had a Spearman’s rank correlation coefficient larger than 0.90 
were 18, 17, 28, and 32 for the CAP, CPM, EAPM, and NARV MLRAs, respectively. In 
summary, there is some multi-collinearity between the provided terrain predictor varia-
bles. This was especially true when the same variable was calculated using different mov-
ing window sizes. 

Slope gradient (Slp) [69] was calculated using the Slope Tool made available in the 
Spatial Analyst Extension of ArcGIS Pro [70]. The Geomorphometry and Gradient Metrics 
Toolbox [71] extension for ArcGIS Pro was used to calculate mean slope gradient (SlpMn) 
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[69], linear aspect (LnAsp) [72], the topographic position index (TPI) [73], the topographic 
roughness index (TRI) [74,75], the topographic dissection index (TDI) [76], the surface area 
ratio (SAR) [77], the surface relief ratio (SRR) [78], the site exposure index (SEI) [79], and 
the heat load index (HLI) [80]. Profile (PrC), plan (PlC), longitudinal (LnC), and cross-
sectional (CSC) curvatures [81,82] were calculated using the Morphometric Features Mod-
ule in the open-source System for Automated Geoscientific Analysis (SAGA) software 
[83,84]. A total of 32 topographic predictor variables were used. All raster grid cell values 
at the training and validation sample point locations were then extracted without bilinear 
interpolation to generate tables using the Extract Multi Values to Points tool in ArcGIS 
Pro [70]. 

3.3. Model Traning 
The kNN, LR, RF, and SVM algorithms were trained using the caret [85] package in 

R [86]. This package acts as a wrapper that allows for the execution of a variety of ML 
methods using consistent syntax. The kNN algorithm uses the class package [87] while LR 
uses stats [86], RF uses randomForest [88], and SVM uses kernlab [89]. LR was imple-
mented without hyperparameter optimization while kNN, RF, and SVM were optimized 
using five-fold cross validation. In order to avoid model bias, the cross-validation only 
used samples from the training set that occurred within the randomly selected hexagonal 
tessellation units. The validation samples were not used to optimize the models. Each 
model was trained five times, using four of the folds and maintaining the final fold for 
performance assessment. Once all folds were withheld, results were average to obtain fi-
nal assessment metrics for each hyperparameter combination tested. A total of 20 values 
were tested for all optimized hyperparameters. For the number of neighbors (k) parameter 
for kNN, values between 5 and 43 were tested while values between 2 and 32 were tested 
for the RF number of variables available for splitting at each node (mtry) parameter. The 
cost parameter (c) was optimized for SVM, and values between roughly 1e-1 and 1e5 were 
tested. For RF, 501 trees were used in all models. SVM made use of a radial basis function 
(RBF). The best average AUC ROC for the withheld folds was used to select the final hy-
perparameters and train the final model. 

EBM was implemented using Python [90] and the InterpretML library [91]. Default 
parameters were used, as suggested by the library originators [6,11] and also to specifi-
cally assess how well the algorithm performed “out-of-box”. Specifically, 5000 rounds of 
boosting were used with a learning rate of 0.01. We obtained all graphics representing the 
one-dimensional feature functions for each predictor variable, two-dimensional feature 
functions for included interactions, and global importance estimates based on mean abso-
lute scores. We also explored local predictions for selected points. 

3.4. Model Assessment 
In order to assess model generalization to new geographic extents, all trained models 

were applied to the validation data in the MLRAs in which they were trained and also all 
other MLRAs. Several binary, threshold-based metrics were calculated including overall 
accuracy (OA) and precision, recall, F1 score, sensitivity, and negative predictive value 
(NPV) with the slope failure class as the positive case. Samples with a predicted probabil-
ity of occurrence in the slope failure class of greater than or equal to 0.5 were classified to 
the positive case while those lower than 0.5 were mapped to the negative case. Table 3 
provides the terminology used to define the calculated metrics. True positive (TP) samples 
are those that are in the slope failure class and are correctly mapped as failures while false 
positives (FPs) are not in the slope failure class (i.e., pseudo absence samples) but are in-
correctly mapped as failures. True negatives (TNs) are pseudo absence samples correctly 
mapped as not failures while false negatives (FNs) are mapped as not failures when they 
are actually failures. 
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Table 3. Example binary confusion matrix and associated terminology. TP = true positive, FP = false 
positive, TN = true negative, and FN = false negative. 

 
Reference Data 

True False 1—Commission Error 

Classification Result 
True TP FP Precision 
False FN TN NPV 

 1—Omission Errors Recall Specificity  

Overall accuracy (OA) (Equation (3)) represents the proportion of correctly classified 
samples in both classes. Precision (Equation (4)) is equivalent to 1—commission error 
while recall or sensitivity (Equation (5)) represents 1—omission error relative to the slope 
failure class. The F1 score (Equation (6)) is the harmonic mean of precision and recall. 
Similar to precision and recall, negative predictive value (NPV) (Equation (7)) and speci-
ficity (Equation (8)) represent 1—commission error and 1—omission error for the negative 
or not slope failure class, respectively [92]. All binary assessment metrics were calculated 
using the caret [85] package in R [86], which allows for the calculation of 95% confidence 
intervals for OA based on a binomial distribution [85,93]. 

Overall Accuracy (OA) = TP+FP
TP+TN+FP+FN

 (3) 

Precision = TP
TP + FP

 (4) 

Recall or Sensitivity = TP
TP + FN

 (5) 

F1 Score = 2 × Precision × Recall
Precision + Recall

 (6) 

Negative Predictive Value (NPV) = TN
TN + FN

 (7) 

Specificity = TN
TN + FP

 (8) 

We also calculated metrics that make use of predicted class probabilities and do not 
require defining a binary decision threshold. First, we calculated receiver operating char-
acteristic (ROC) curves and the associated area under the curve measure (AUC ROC). An 
ROC curve plots 1—specificity on the x-axis and sensitivity or recall on the y-axis at var-
ying decision thresholds [92,94–96]. The AUC ROC measure is the area under the ROC 
curve and is scaled from 0 to 1, with larger values indicating better model performance 
[92,94–97]. This analysis was undertaken using the pROC package [97] in R [86], which 
allows for the estimation of 95% confidence intervals for AUC ROC. 

Since ROC curves and the associated AUC ROC metric rely on recall and specificity, 
both measures of 1—omission error, and do not take into account precision, or 1—com-
mission error relative to the positive case [92,98], we also calculated precision-recall (P-R) 
curves, which consider recall and precision, or 1—omission and 1—commission error rel-
ative to the positive case. This curve plots recall to the x-axis and precision to the y-axis. 
Similar to ROC curves, an area under the curve (AUC PR) metric can be calculated to 
obtain a single summary statistic [92,98,99]. This analysis was completed using the yard-
stick package [100] in R [86]. 

It should be noted that many assessment metrics are impacted by the relative pro-
portions of classes within the landscape or validation set [92]. Given that slope failure 
initiation locations make up a small proportion of the landscape and that the actual land-
scape proportion is not known a priori, it was not possible to assess the model using cor-
rect landscape proportions. Instead, we relied on a balanced sample to assess the differ-
entiation of the slope failure class from the background. Since a large portion of the land-
scape is not a slope failure initiation location, there is a greater chance of FPs than is rep-
resented in our validation sample. When class proportions are not known, such as for 
predicting habitat suitability or future landscape change, it is common to use a class-bal-
anced validation set (for example [101–103]). 
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4. Results 
4.1. Algorithm Comparisons 

Table 4 reports the assessment metrics obtained by predicting to the 1000 withheld 
validation samples within each MLRA study area using each algorithm while Figure 4 
shows the OA, F1 score, AUC ROC, and AUC PR results specifically. Generally, the LR 
and kNN algorithms showed the weakest performance while the EBM, RF, and SVM al-
gorithms showed the strongest performance. The slope failure predictions for the CAP 
and CPM regions generally had lower accuracies than those of the EAPM and NARV for 
all tested algorithms. Additionally, as evident in Figure 4, we observed more disparity in 
model performance between algorithms in the CAP and CPM in comparison to the EAPM 
and NARV. 

Table 4. Assessment metrics calculated using the withheld validation samples in each MLRA for 
each algorithm. OA = overall accuracy, NPV = negative predictive value, AUC ROC = area under 
the receiver operating characteristics curve, and AUC PR = area under the precision-recall curve. 

Study Area Algorithm OA Precision 
F1 

Score 
Recall Specificity NPV 

AUC 
ROC 

AUC 
PR 

CAP EBM 0.823 0.857 0.814 0.776 0.870 0.795 0.903 0.909 
CAP kNN 0.806 0.834 0.797 0.764 0.848 0.782 0.884 0.888 
CAP LR 0.789 0.819 0.779 0.742 0.836 0.764 0.843 0.844 
CAP RF 0.839 0.854 0.836 0.818 0.860 0.825 0.903 0.905 
CAP SVM 0.854 0.886 0.848 0.812 0.896 0.827 0.911 0.906 
CPM EBM 0.849 0.847 0.849 0.852 0.846 0.851 0.917 0.909 
CPM kNN 0.815 0.801 0.819 0.838 0.792 0.830 0.888 0.880 
CPM LR 0.797 0.799 0.796 0.794 0.800 0.795 0.870 0.839 
CPM RF 0.835 0.829 0.836 0.844 0.826 0.841 0.910 0.899 
CPM SVM 0.857 0.844 0.860 0.876 0.838 0.871 0.924 0.910 

EAPM EBM 0.875 0.854 0.879 0.904 0.846 0.898 0.945 0.930 
EAPM kNN 0.853 0.831 0.858 0.886 0.820 0.878 0.936 0.936 
EAPM LR 0.850 0.830 0.854 0.880 0.820 0.872 0.931 0.923 
EAPM RF 0.877 0.848 0.882 0.918 0.836 0.911 0.955 0.944 
EAPM SVM 0.890 0.878 0.892 0.906 0.874 0.903 0.949 0.942 
NARV EBM 0.870 0.857 0.872 0.888 0.852 0.884 0.947 0.941 
NARV kNN 0.859 0.845 0.862 0.880 0.838 0.875 0.924 0.912 
NARV LR 0.831 0.814 0.835 0.858 0.804 0.850 0.925 0.915 
NARV RF 0.884 0.861 0.888 0.916 0.852 0.910 0.948 0.944 
NARV SVM 0.881 0.879 0.881 0.884 0.878 0.883 0.944 0.940 

The EBM method provided comparable performance to the current standard black 
box RF and SVM methods for this specific task. Overall accuracies for predicting slope 
failure in the CAP, CPM, EAPM, and NARV regions using EBM were 0.823, 0.849, 0.875, 
and 0.870, respectively, while F1 scores for the slope failure class were 0.814, 0.849, 0.879, 
and 0.872. AUC ROC and AUC PR values were all above 0.900 for all MLRAs when pre-
dicted using EBM. 
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Figure 4. Model comparison and assessment using the withheld validation data for each algorithm 
in each MLRA study area. Bars for OA and AUC PR represent an estimated 95% confidence interval. 
(a) AUC ROC and AUC PR; (b) overall accuracy and F1 score. 

The ROC and PR curves shown in Figures 5 and 6, respectively, support the results 
highlighted in Table 4 and Figure 5. EBM generally performed comparably to RF and SVM 
while outperforming kNN and LR. The CAP and CPM MLRAs were generally predicted 
with lower accuracies than the EAPM and NARV regardless of the algorithm used. Addi-
tionally, there was generally more variability in performance between algorithms in the 
CAP and CPM. EBM, similar to RF and SVM, showed strong performance across a wide 
variety of decision thresholds. Additionally, sources of error varied between the different 
MLRAs when predicted using EBM since, amongst the precision, recall, specificity, and 
NPV metrics, no measure was consistently higher or lower than the others across all 



Remote Sens. 2021, 13, 4991 14 of 27 
 

 

MLRAs. The strength of the ROC and PR curves is that they illustrate the trade-offs asso-
ciated with predicting slope failure. The likelihood of slope failure is not a binary variable, 
but instead is a fuzzy variable. Figure 5a shows that in the CAP, LR and kNN underper-
form the other methods, irrespective of the threshold for labeling a pixel likely to experi-
ence slope failure. In contrast, in the EAPM (Figure 6c), the different methods are similar 
across most thresholds, and the lower performance of LR and kNN is associated with just 
part of the graph. 

 
Figure 5. Receiver operating characteristic (ROC) curves for all five models in each of the four MLRA 
study areas. Associated AUC ROC values are provided in Table 4. (a–d) provide results for the CAP, 
CPM, EAPM, and NARV MLRAs, respectively. 
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Figure 6. Precision-recall (PR) curves for all five models in each of the four MLRA study areas. As-
sociated AUC PR values are provided in Table 4. (a–d) provide results for the CAP, CPM, EAPM, 
and NARV MLRAs, respectively. 

4.2. Sample Size and Model Generalization 
Figure 7 summarizes for each MLRA how all tested algorithms responded to a re-

duction in the number of training samples from 1200 samples per class to just 10. Similar 
to the overall accuracy results discussed above, EBM performed similarly to RF and SVM 
in regard to predictive performance as measured with OA, F1 score, and AUC ROC. The 
sample size experimentation confirms that this pattern holds across a range of sample 
sizes: EBM, RF, and SVM outperformed kNN and LR regardless of sample size. The study 
areas that were predicted with higher accuracies generally showed less variability be-
tween algorithms while those predicted with lower accuracies showed more variability. 
Regardless of the algorithm used, predictions for the EAPM MLRA, and to a lesser extent 
the NARV, generally stabilized or stopped improving when the sample size reached 
roughly 200 samples per class. For the other areas, performance continued to improve 
with sample size increases; however, improvements were slow after 200 to 300 samples 
per class. 
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Figure 7. Impact of training sample size on model performance measured using OA, F1 score for 
the slope failure class, and AUC ROC within all MLRA study areas using all algorithms. Sample 
size represents the number of samples per class. (a) Overall accuracy; (b) F1 score; (c) AUC ROC. 

Figure 8 shows the OA and F1 scores obtained when each model was used to predict 
the validation data within all MLRAs. Similar to the results from our prior study [9], re-
duced accuracy was observed when trained models were extrapolated to a new MLRA. 
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Expanding upon our prior study, in which only the RF algorithm was assessed, this pat-
tern was observed for all tested algorithms, including EBM. All algorithms provided more 
similar performance when predicting to the validation data in the EAPM and NARV 
MLRAs and more disparate performance when predicting to the CAP and CPM. In sum-
mary, EBM showed similar generalization trends in comparison to the other tested algo-
rithms. 

 
Figure 8. Assessment of model generalization to different MLRAs using OA and F1 score. Bars for OA represent an esti-
mated 95% confidence interval. 
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4.3. Exploration of EBM Results 
Figure 9 shows variable importance estimates for all terrain predictor variables 

within each MLRA as estimated using EBM and the mean absolute score metric. Slp was 
generally found to be important along with SAR, both of which are associated with local 
topographic steepness. However, the CPM MLRA showed lower importance for Slp and 
SAR in comparison to the other MLRAs. Generally, variables calculated using a smaller 
moving window size were more important than the same variable calculated at a larger 
window size. Some variables were also consistently of low importance, such as LnASP 
and HLI. This suggests that the orientation of the slope and the amount of incoming solar 
radiation were not strong predictor variables for estimating slope failure occurrence. In 
contrast, measures of steepness, roughness, incision, and surface curvature were generally 
more important. 

 
Figure 9. EBM variable importance estimates for each MLRA based on mean absolute score. 
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Figure 10 shows some example, ancillary output provided by a trained EBM model 
for interpreting the global results for the NARV MLRA specifically. As described above, 
the gradient boosting process results in many decision trees for each predictor variable 
that are then used to generate the function that describes how the dependent variable, in 
this case slope failure occurrence, responds to the specific predictor variable [6,7,11]. 
These functions can then be visualized graphically as a one-dimensional function where 
the predictor variable values are mapped to the x-axis and the resulting scores (i.e., the 
effect of the predictor variable on the predicted logits for the positive class) are mapped 
to the y-axis. Larger scores indicate that predictor variable values in that range are associ-
ated with slope failure. Figure 10a–d provide example functions for the Slp, SAR, CSC7, 
and HLI predictor variables. Again, each predictor variable in the model will have a 
unique function, which can be visualized graphically to enhance interpretability [6,7]. 

 
Figure 10. EBM functions for a subset of variables and two-dimensional interaction plots for a subset of the predictor 
variables for the NARV model. These plots offer explanations for the global model. (a) The slope; (b) the surface area ratio; 
(c) cross-sectional curvature; (d) the heat load index; (e) interaction between the topographic roughness index calculated 
using a 7 cell radius and the surface area ratio; (f) interaction between topographic slope and the topographic roughness 
index calculated using an 11 cell radius. 

Figure 10a suggests that slope failures are associated with steeper slopes (Slp) while 
Figure 11b suggests they are associated with higher surface area ratios (SAR). In contrast, 
slope failures are associated with more negative cross-sectional curvatures (CSC) (Figure 
10c). The heat load index (HLI) (Figure 10d) was a weak predictor variable in each MLRA, 
including the NARV, based on the importance results discussed above (see Figure 9). As 
evident in the function, there is little variability in the slope failure occurrence prediction 
with changes in the HLI. 
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Pair-wise interactions, for which inclusion has been shown to improve the accuracy 
of the prediction in comparison to traditional GAMs [7], are described in Figure 10e,f for 
two example variable pairs. Again, similar graphics are produced for each included pair-
wise interaction [6,7]. The graphs indicate that high SAR and low TRI7 values and, simi-
larly, high Slp and low TRI11 values are associated with high scores (i.e., predictions of 
slope failure occurrence). 

Figure 11 provides variable importance and contribution estimates for predicting two 
data points within the NARV as an example of local model explanations tied to specific 
predictions. Again, variable contributions as scores are provided for all predictions to new 
data [6,7]. The data point presented in Figure 11a is a pseudo absence data point that was 
incorrectly predicted as a slope failure location with a predicted probability of occurrence 
of 0.931 while the data point presented in Figure 11b is a slope failure sample that was 
correctly predicted as a slope failure but with a low probability (0.55). As the results sug-
gest, a variety of site characteristics at the incorrectly predicted pseudo absence point con-
tributed to the results, as many topographic characteristics were indicative of failure. This 
site is located along a slope break that may result from a rock outcrop or resistant unit. 
This suggests that the model may predict false positives for rock outcrops that have topo-
graphic characteristics similar to slope failure head scarps or initiation locations, on which 
the model was trained. For example, topographic roughness near this site tended to sup-
port the prediction of slope failure occurrence when this characteristic was likely the result 
of the underly geology and outcropping. These added explanations can highlight some 
useful limitations or pitfalls for applying and interpreting the model. 

 
Figure 11. Variable contribution estimates or scores for two sites as an examples of local model ex-
planations provided by EBM. Only the top 15 contributing variables are included in the charts. (a) 
Non-slope failure site incorrectly predicted as a failure; (b) slope failure site correctly predicted, but 
with low probability. 
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In contrast to the incorrectly predicted pseudo absence sample, the low predicted 
probability of the slope failure point presented in Figure 11b seems to arise from contra-
dictory signals from a variety of terrain variables, as the top contributing variables indi-
cated conflicting scores. 

5. Discussion 
5.1. Algorithm Performance Comparison and EBM Interpretability 

Across the four MLRA study areas, EBM outperformed LR and kNN and performed 
comparably to RF and SVM for predicting slope failure occurrence based on multiple met-
rics (i.e., OA, precision, recall, F1 score, specificity, NPV, AUC ROC, and AUC PR). This 
supports the assertions in the studies that introduced EBM [6,7,11] that the method allows 
for strong predictive performance. Several prior studies have noted better performance 
from RF and SVM in comparison to simpler methods, such as kNNs and DTs (e.g., 
[1,3,104]), for a variety of tasks. For classification tasks in the field of remote sensing, RF 
and SVM have been suggested as the current standards since they generally outperform 
the standard and parametric Gaussian maximum likelihood method [1]. Thus, the EBM 
method provided comparable performance to the current standard black box RF and SVM 
methods for this specific task. 

It should be noted that we did not compare the performance of EBM for this specific 
task to more traditional GAM methods. Goetz et al. [35] compared many algorithms for 
slope failure susceptibility modeling, including traditional GAMs, LR, RF, and SVM, and 
found differences ranging between 2.9 and 8.9 percentage points for the AUC ROC metric. 
Further, they noted that the RF output, despite strong predictive performance, generated 
more spatially heterogenous predictions with notable artifacts while GAM, LR, and SVM 
provided a smoother output [35]. Steger et al. [105] also noted the heterogenous nature of 
the RF output and further documented that high predictive performance was obtained by 
a variety of algorithms for landslide susceptibility prediction even though the resulting 
spatial predictions were inconsistent. Outside of the landslide predictive modeling do-
main and in the paper that introduced the GA2M method, on which EBM is based, equiv-
alent performance or only marginal improvements in accuracy was noted between GA2M 
and traditional GAMs, and the major innovation of the method was highlighted as the 
development of the FAST method for selection of pair-wise interactions to include in the 
model [7]. More work on relating the predictive performance of EBMs to other GAM-
based methods and comparing the spatial outputs, variable importance estimates, feature-
specific functions, and two-dimensional interaction heat maps is merited. Further, since 
EBM relies on shallow decision trees, further investigation is necessary to explore how 
heterogenous the spatial outputs may be and whether or not artifacts are evident. 

Similar to Maxwell et al. [9], in which only the RF algorithm was used, the slope fail-
ure predictions for the CAP and CPM regions generally had lower accuracies than those 
of the EAPM and NARV. Expanding upon this prior study, this trend was consistent for 
all five tested algorithms. More disparity in model performance between algorithms in 
the CAP and CPM in comparison to the EAPM and NARV is attributed to a less clear 
topographic signature for slope failures in these landscapes. For example, the CPM has 
experienced significant landscape disturbance, alteration, and recontouring as a result of 
historic surface coal mining and more recent mountaintop removal coal mining 
[66,67,106], resulting in a very complex topographic surface in which the signature of fail-
ures may be less pronounced or unique. Additionally, the EBM-based variable importance 
estimates suggested that the Slp and SAR variables were less important in this MLRA in 
comparison to the other three study areas (see Figure 9), which may result from varying 
landscape conditions and anthropogenic landscape changes. Visual inspection of slope 
failure locations in the CPM suggests association with mining and mine reclamation, as 
failures are common around the periphery of reclaimed surface mine sites. 
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In regard to number of training samples, this study suggests that a large number of 
samples may not be necessary to obtain accurate results for this specific problem, which 
supports prior findings from Maxwell et al. [8]. In comparison to RF and SVM, EBM 
showed similar trends and accuracies as sample size was decreased. This suggest that 
comparable performance can be obtained when using the EBM method as opposed to RF 
or SVM regardless of sample size. 

All five tested algorithms generally showed reduced performance when used to pre-
dict validation data from a different MLRA as opposed to the one in which they were 
trained. Or, the models did not generalize well to new landscapes with different terrain 
conditions and disturbance patterns, even though all tested landscapes where within the 
state of West Virginia, USA. Generally, our results suggest that geographic generalization 
of EBM models are similar to RF and SVM models for this specific task and investigated 
landscape. 

Our results highlight the interpretability of EBM models and support the assertions 
of the algorithms developers. Each predictor variable has an associated one-dimensional 
function that can be visualized graphically. Similarly, each included interaction term can 
be visualized as a two-dimensional heat map. From these graphics, it is possible to deter-
mine the resulting score given any input value. Global interpretability is enhanced by the 
estimation of variable importance based on the mean absolute score. For each prediction, 
variable contribution and scores are provided, which helps explain predictions made at 
all sample points or new locations. This is valuable for determining what site characteris-
tics resulted in the prediction. In summary, for this specific empirical modeling task, EBM 
offered accuracies comparable to RF and SVM alongside more interpretable results that 
can be easily visualized graphically. 

We also argue that the provided global and local interpretations offer insight for un-
derstanding the geologic and surficial conditions that are associated with slope failure 
occurrence within specific physiographies or at specific locations, respectively. For exam-
ple, a steeper Slp and higher SAR where generally predictive of slope failure occurrence, 
which is likely a result of correlation with gravitational potential energy and the presence 
of slope breaks, such as those associated with a head scarp. This could also be associated 
with the occurrence of unit contacts where landslides may result from a resistant unit po-
sitioned above a less resistant unit that has been eroded. In the NARV specifically, there 
are many geologic contacts occurring at often steep dip angles due to significant geologic 
folding [64,65]. As noted above, Slp and SAR were generally less predictive of landslide 
occurrence in the CPM MLRA, which we attribute to anthropogenic landscape alterations 
and a naturally steep topography where steepness may be of less use for differentiating 
failures from other landscape features. Surface roughness was also generally correlated 
with slope failure occurrence, which could result from the irregular topography associ-
ated with failures (e.g., minor scarps and transverse cracks) and displaced debris or talus. 
It should be noted that the inclusion of a large number of correlated variables increases 
the complexity of assessing the correlation between each predictor variable and the like-
lihood of slope failure occurrence. As discussed below, implementing an interpretable 
model has additional implications for selecting predictor variables to include in the fea-
ture space. Interpretation is especially difficult when the same variable is calculated using 
different moving window sizes to characterize landscape patterns at varying scales. This 
highlights the need to investigate alternative methods to either select appropriate window 
sizes or summarize the landscape at multiple scales using a smaller set of variables. 

5.2. Future Research Needs 
Since EBM can be used for regression, binary classification, multiclass classification, 

and probabilistic modeling, it has many potential applications in spatial predictive map-
ping and modeling and remote sensing (e.g., forest biomass estimation, soil properties 
prediction, land cover classification, landform mapping, and species habitat prediction). 
Given that the EBM classification performance documented here was comparable to RF 
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and SVM, the current standards in remote sensing, additional research on this algorithm 
is merited. Exploration of how EBM-based predictions are impacted by imbalance in train-
ing data would be useful. It would also be useful to further investigate how the inclusion 
of interaction terms may impact model interpretability and, specifically, the contribution 
of specific variables. Further exploration is required to better understand the impact on 
accuracy and interpretability of including a large number of correlated predictor varia-
bles. The importance estimation based on the mean absolute score needs to be further 
explored. For example, many studies have investigated the permutation-based variable 
importance measures generated by RF and have noted issues when variables are highly 
correlated and/or measured on different scales. Issues also arise when a mix of categorical 
and continuous predictor variables are included and/or when categorical variables have 
varying numbers of levels. This has led to the augmentation of the RF variable importance 
methods for addressing these issues and specifically obtaining estimates of marginal vs. 
partial variable importance (see, for example, [17,18,107]). If EBM-based variable im-
portance estimates are to be adopted more widely, similar investigations, and potentially 
refinements and augmentations, are necessary. 

If it is decided that model interpretability is of importance, this may impact other 
modeling decisions as opposed to just the algorithm used. For example, including a large 
number of predictor variables that are not well understood by the end user would still 
hinder interpretation. In this study, a large number of predictor variables were used, some 
of which may not be easy to interpret or could result from differing causes or be associated 
with varying landscape characteristics. Thus, the end user would need to have an under-
standing of the terrain variables used, how they were calculated, and what site character-
istics they correlate with in order to make full use of the global and local interpretations. 
Additionally, the reported accuracies, estimated predictor variable functions, and variable 
importance estimates may not be consistent across disparate landscapes or when using 
input terrain data of varying spatial resolutions. To make use of the local interpretations 
specifically, resulting models would need to be presented in a manner that allows access 
to the ancillary output. For example, it would be valuable to be able to select a raster cell 
and obtain the local interpretation outputs, as shown in Figure 11 for two sample points, 
along with the probabilistic prediction. 

6. Conclusions 
In this study, we have documented that EBMs can offer predictive performance com-

parable to RF and SVM and stronger performance than simpler methods, such as LR and 
kNN, while also providing model interpretability by the generation of global explanations 
consisting of graphics representing the functions associated with each predictor variable, 
heat maps associated with each included pair-wise interaction, and estimates of variable 
importance based on mean absolute score. Local interpretations are provided for all new 
predictions that summarize the scores associated with each predictor variable or included 
pair-wise interaction. Since being able to understand the global model, the contributions 
of specific predictor variables, the model response to specific predictor variables, and why 
certain samples or locations were predicted to have high or low likelihood of slope failure 
occurrence can be of great value, we argue that the EBM algorithm should be further in-
vestigated as a tool for geohazard predictive modeling. More generally, this method 
should be further explored for additional tasks in spatial predictive modeling and analysis 
of remotely sensed data. 

This study highlights the value of EBM and calls for further exploration of its appli-
cation and interpretation within geohazard mapping and modeling specifically and spa-
tial predictive mapping and modeling in general, especially when the interpretability of 
the result is important and not just predictive accuracy. 
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