

Kurt Donaldson

Manager West Virginia GIS Technical Center West Virginia University

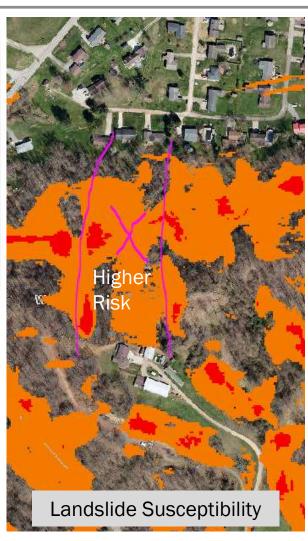
FEMA Coffee Break: Utilizing University Partnerships in Hazard Mitigation Planning November 23, 2022

WVU Faculty Supporting Hazard Mitigation Projects

Partnerships among faculty members expand the subject matter expertise for hazard mitigation planning

HAZARD MITIGATION PROJECT	FUNDING SOURCE	FACULTY MEMBER		ORGANIZATION & EXPERTISE	LINK
Statewide Risk Assessments	HMGP, CTP	Kurt Donaldson	3	WVU GIS Technical Center (online interactive map viewing applications, TEIF/TEAL¹ risk assessments, flood visualizations)	WV Flood Tool Statewide RA Products & Data WV Region 3 Plan w TEIF data
Landslide Susceptibility Modeling	HMGP Aaron Maxwell (landslide modeling, machine learning, remote sensing)		Published Landslide Paper		
Flood Buyouts	NRCS	Katherine Garvey		WVU Land Use and Sustainability Law Clinic (legal and planning services)	Region 3 Resilience Report WV Public Broadcasting
Community Recovery and Resiliency	NSF	Jamie Shinn		WVU Geography Professor (social science, community engagement)	WV Public Broadcasting

¹ Total Exposure in Floodplain (TEIF), Total Exposure Area Landslide (TEAL)


Example 1: Landslide Hazard Risk Assessment

April 2020 Landslide

Wood County, WV

Impacted home moved from foundation

WV Flood Tool

WV Landslide Tool

A statewide landslide susceptibility (high, moderate, low risk) map was created from FEMA-purchased QL2 LiDAR data

Example 2: Voluntary Floodplain Buyout Mitigation

Success Story: West Virginia Partnerships Drive Cost-Effective Mitigation

The Land Use Clinic and NRCS used data from the WV Flood Tool to identify the highest priority areas for buyouts and estimate damages to individual properties. Data gathered from the WV Flood Tool included information related to flood zones, structure type, flood depth, and real estate values. WVU also collected Total Exposure in Floodplain (TEIF) and Total Exposure Area Landslide (TEAL) structural-level data. This information helped the NRCS identify a list of 310 properties that would meet the goal of reducing flood damage. 30 properties may be eligible to participate in a voluntary buyout program.

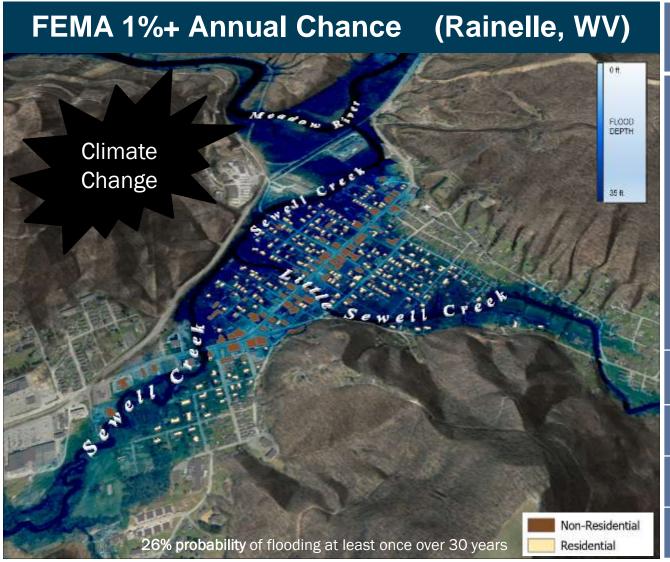
WV Flood Too @ @ 0

FEMA R3 Resiliency Report | WVPBS | Buyout Report

WV Flood Tool: Building-Level Risk Assessments

Risk assessments using FEMA's Hazus methodology helped NRCS identify 310 properties in McDowell County for flood buyouts

Example 3: Community Hazard Planning (Focus Group Meetings)



- Feedback desired from Focus Groups:
 - What lessons were learned from the immediate response and longer-term recovery from the 2016 flood?
 - What priorities are needed for a stronger flood response and recovery plan in the event of a future flood?

- Feedback of Flood Study Products:
 - Flood Characteristics and Models
 - Flood Risk Assessment (vulnerability, exposure, loss)
 - Mitigation Maps
 - Flood Visualization Tools

Example 3: Community Hazard Planning (Flood Characteristics)

Category	Flood Characteristic (in context to 2016 Flood)	White Sulphur Springs	Rainelle
Frequency (new flood maps)	Probability that a flood of a specific size will be equaled or exceeded in any given year. FEMA Flood Models (new): 10-, 25-, 50-, 100-, 100+, and 500-year flood elevations. First Street Foundation Flood Models: 5-, 20-, 100-, and 500-year flood elevations.	2016 Flood Between 100- and 500-year FEMA Climate BFE+6ft FSF Climate 2052 or 30 years in the future	2016 Flood Between 100- and 500-year FEMA Climate BFE+1ft FSF Climate 2052 or 30 years in the future
Depth	Flood depth. Source USGS high-water marks	6 feet	8 feet
Velocity	Speed at which the floodwaters are flowing	High	Moderate
Duration	Measure of how long water remains above normal levels	24 hours	72 hours
Rise and Fall	Floodwater that rises very quickly with little or no warning	Quick Rise	Quick Rise

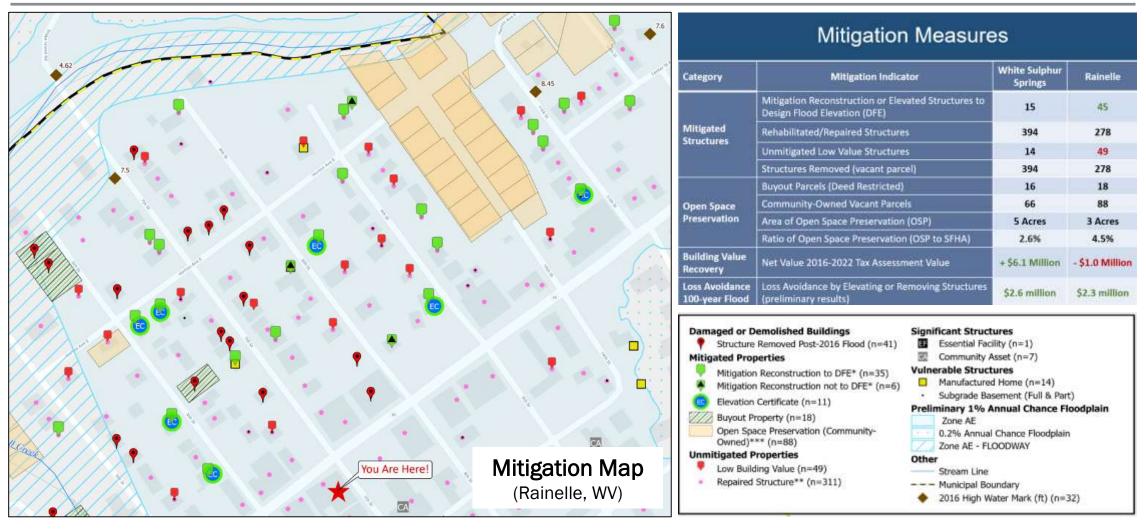
Example 3: Community Hazard Planning (Risk Indicators)

Social Vulnerability Indicators White Sulphur Springs and Rainelle

	Vulnerability Indicators	White Sulphur Springs	Rainelle	State Ratio	National Ratio
\$	Poverty Rate	14.4%	37.0%	17.3%	12.9%
JOBIESS II II	Unemployment Rate	21.4%	33.6%	23.8%	14.7%
ίħ	Vulnerable Ages Ratio	41.7%	39.8%	30.8%	28.3%
ڂ	Disability Ratio	17.8%	26.9%	18.7%	13.0%
†\^	Population Growth Ratio	-9.1%	-20.9%	-3.2%	7.4%
1	Renter-Occupied Ratio	42.8%	43.0%	26.8%	36.0%
' \$	Housing Values Less than \$50K Housing Median Value	3.9% \$125,700	37.5% \$59,400	16.9% \$119,600	6.6% \$229,800

Building/Parcel Exposure White Sulphur Springs and Rainelle

Category	Exposure Indicator	White Sulphur Springs	Rainelle	Ratio* in WV Incorporated Areas (2021)
Buildings by Flood Zone (Count & Value)	Total Primary Building Count in Floodplain	423 (Rank***: 12 th)	338 (Rank: 18 th)	59 (Median)
	Building Ratio b/w Floodplain & Community Total	26%	34%	9%
	Total Primary Building Value in Floodplain of Community	\$40,881K (Rank: 16 th)	\$16,120K	\$6,417K (Median)
	Median Building Value in Floodplain	\$49K	\$38K	\$42K
	Building Count in Floodway** (High Velocity)	65 (Rank: 13 th)	9	12 (Avg.)
	Percent Building Count in Floodway** (High Velocity & Depth)	15%	3%	8%
	New Maps: Bldgs. "Mapped In" SFHA	72 (Rank: 12 th)	329 (Rank: 3 rd)	19 (Avg.)
	New Maps: Bldgs. % Count "Mapped In" SFHA	17%	97%	14%
	New Maps: Bldgs. "Mapped Out" SFHA	118 (Rank: 8 th)	0	19 (Avg.)
	New Maps: Bldgs. % Count "Mapped Out" SFHA	28%	0%	14%


The red texts show more than 5% of difference, to the vulnerability side, from the state ratios.

Vulnerability, Exposure, and Hazus Loss Indicators for the disadvantaged communities of Rainelle and White Sulphur Springs

Example 3: Community Hazard Planning (Mitigation Measures)

Field verification and analysis of mitigation measures implemented by property owners and the community in context of the 2016 flood and local floodplain management regulations

Mitigation Reconstruction: Resiliency to Future Floods (Climate Change)

How well are mitigated structures protected from changing environmental factors due to climate change? The new FEMA flood maps for Rainelle reveal that the mitigated structure above is a risk for the 1%+ (100-yr) and 0.2-percent chance (500-yr) floods.